Featured Research

from universities, journals, and other organizations

Chelyabinsk meteorite's rocky past: Research points to previous collision or near miss in space

Date:
August 26, 2013
Source:
European Association of Geochemistry
Summary:
Where did the Chelyabinsk meteorite come from? As a meteoroid, it either collided with another body in the solar system or came too close to the Sun before it fell to Earth, according to new research.

Fragment of Chelyabinsk meteorite, showing the fusion crust -- the result of a previous collision or near miss with another planetary body or with the sun.
Credit: Dr. Victor Sharygin

Where did the Chelyabinsk meteorite come from? As a meteoroid, it either collided with another body in the solar system or came too close to the Sun before it fell to Earth, according to research announced today (Tuesday 27th August) at the Goldschmidt conference in Florence.

Related Articles


A team from the Institute of Geology and Mineralogy (IGM) in Novosibirsk have analysed fragments of the meteorite, the main body of which fell to the bottom of the Chebarkul Lake near Chelyabinsk on 15 February this year.

Although all of the fragments are composed of the same minerals, the structure and texture of some fragments show that the meteorite had undergone an intensive melting process before it was subjected to extremely high temperatures on entering Earth's atmosphere.

"The meteorite which landed near Chelyabinsk is a type known as an LL5 chondrite and it's fairly common for these to have undergone a melting process before they fall to Earth," says Dr Victor Sharygin from IGM, who is presenting the research at the Goldschmidt conference. "This almost certainly means that there was a collision between the Chelyabinsk meteorite and another body in the solar system or a near miss with the Sun."

Based on their colour and structure, the IGM researchers have divided the meteorite fragments into three types: light, dark and intermediate. The lighter fragments are the most commonly found, but the dark fragments are found in increasing numbers along the meteorite's trajectory, with the greatest number found close to where it hit Earth.

The dark fragments include a large proportion of fine-grained material, and their structure, texture and mineral composition shows they were formed by a very intensive melting process, likely to have been either a collision with another body or proximity to the Sun. This material is distinct from the 'fusion crust' -- the thin layer of material on the surface of the meteorite that melts, then solidifies, as it travels through Earth's atmosphere.

"Of the many fragments we've been analysing, only three dark samples show strong evidence of earlier metamorphism and melting," says Dr Sharygin. "However, many fragments of the meteorite were picked up by members of the public, so it's impossible to say how large a portion of the meteorite was affected. We hope to find out more once the main body of the meteorite is raised from Chebarkul Lake."

The fine-grained material of the dark fragments also differs from the other samples as it commonly contains spherical 'bubbles' which are either encrusted with perfect crystals of oxides, silicates and metal or filled with metal and sulfide.

Surprisingly, the IGM team also found small quantities of platinum group elements in the meteorite's fusion crust. The team are only able to identify these elements as an alloy of osmium, iridium and platinum, but its presence is unusual as the fusion crust is formed over too short a time period for these elements to easily accumulate.

"Platinum group elements usually occur as trace elements dispersed in meteorite minerals, but we found them as a nanometer-sized mineral (100-200 nm) in a metal-sulfide globule in the fusion crust of the Chelyabinsk meteorite," explains Dr Sharygin. "We think the appearance (formation) of this platinum group mineral in the fusion crust may be linked to compositional changes in metal-sulfide liquid during remelting and oxidation processes as the meteorite came into contact with atmospheric oxygen."

The findings are part of ongoing research into the meteorite, using a scanning microscope, electron microprobe and gas chromatography-mass spectrometry, through which the IGM team are producing a detailed mineral analysis of the Chelyabinsk meteorite.


Story Source:

The above story is based on materials provided by European Association of Geochemistry. Note: Materials may be edited for content and length.


Cite This Page:

European Association of Geochemistry. "Chelyabinsk meteorite's rocky past: Research points to previous collision or near miss in space." ScienceDaily. ScienceDaily, 26 August 2013. <www.sciencedaily.com/releases/2013/08/130826215605.htm>.
European Association of Geochemistry. (2013, August 26). Chelyabinsk meteorite's rocky past: Research points to previous collision or near miss in space. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2013/08/130826215605.htm
European Association of Geochemistry. "Chelyabinsk meteorite's rocky past: Research points to previous collision or near miss in space." ScienceDaily. www.sciencedaily.com/releases/2013/08/130826215605.htm (accessed October 25, 2014).

Share This



More Space & Time News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: China Launches Moon Orbiter

Raw: China Launches Moon Orbiter

AP (Oct. 24, 2014) China launched an experimental spacecraft Friday to fly around the moon and back to Earth in preparation for the country's first unmanned return trip to the lunar surface. (Oct. 24) Video provided by AP
Powered by NewsLook.com
China Prepares Unmanned Mission To Lunar Orbit

China Prepares Unmanned Mission To Lunar Orbit

Newsy (Oct. 23, 2014) The mission is China's next step toward automated sample-return missions and eventual manned missions to the moon. Video provided by Newsy
Powered by NewsLook.com
Russian Cosmonauts Kick Off Final Spacewalk of 2014

Russian Cosmonauts Kick Off Final Spacewalk of 2014

Reuters - US Online Video (Oct. 22, 2014) Russian cosmonauts Maxim Suraev and Alexander Samokutyaev step outside the International Space Station to perform work on the exterior of the station's Russian module. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
Comet Siding Spring Grazes Mars' Atmosphere

Comet Siding Spring Grazes Mars' Atmosphere

Newsy (Oct. 19, 2014) A comet from the farthest reaches of the solar system passed extremely close to Mars this weekend, giving astronomers a rare opportunity to study it. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins