Featured Research

from universities, journals, and other organizations

Promising chronic pain drug developed

Date:
August 28, 2013
Source:
University of Maryland
Summary:
A recent report indicates that 116-million Americans live with some form of chronic pain. Historically, chemists have developed drugs aimed at just one biological target. Two drugs used together may metabolize differently or present other issues. This new drug, named UMB 425 affects two different opioid receptors, providing diminished tolerance.

A team of researchers led by Andrew Coop, PhD, professor and chair of the Department of Pharmaceutical Sciences (PSC) at the University of Maryland School of Pharmacy (UMSOP), has developed a new opioid drug that shows great potential to advance treatment and improve quality of life for individuals living with chronic pain.

Related Articles


Spotlighted in a recent issue of ACS Chemical Neuroscience, the compound, known as UMB 425, is as strong as morphine, but displays diminished tolerance over time with no obvious toxic effects.

"UMB 425 is a breakthrough in the development of therapeutics to treat chronic pain," says Coop. "Unlike other drugs developed to act on only one biological target, UMB 425 acts on two different opioid receptors in the body. When activated at the same time, these receptors work together to provide pain relief and slow the body's development of tolerance to the drug. This diminished tolerance allows a lower dose of the opioid to be administered for a longer time period, while still achieving the same level of pain relief."

For individuals living with chronic pain, either as a result of injury or disease such as arthritis, opioids are the standard treatment. But as the dosage increases to offset the body's tolerance to their effects, opioids cause a number of adverse effects, including constipation, nausea, drowsiness, and dizziness. The unique dual-profile of UMB 425 -- made possible through Coop's collaborations with Alexander MacKerell, PhD, professor in PSC and director of the School's Computer Aided Drug Design Center, and Maureen Kane, PhD, assistant professor in PSC and co-director of the School's Mass Spectrometry Facility -- provides both pain relief as well as diminished tolerance in one drug.

"Historically, medicinal chemists have developed drugs aimed at only one biological target," says Coop. "However, two drugs administered together have the potential to metabolize differently in different individuals, as well as affect patients' adherence to both drugs. A single compound that is able to provide both pain relief and diminished tolerance has the advantage of a defined ratio that we can optimize to ensure patients receive the maximum pain relief, while experiencing minimum adverse effects."

Coop and his team conducted several in vitro and in vivo studies to determine the drug's effectiveness in alleviating pain and diminishing tolerance over time. If future research and clinical trials are successful, UMB 425 could have a significant impact on the treatment and quality of life for individuals living with chronic pain.

"The clinical implication of this research has the potential to be tremendous," says Mary Lynn McPherson, PharmD, BCPS, CPE, professor and vice chair for academic affairs in the Department of Pharmacy Practice and Science, and an international authority in the fields of pain management and palliative care. "If clinicians can prescribe lower doses of opioids, they will not have to raise a patient's dose because of tolerance to the analgesic effects. Using lower doses will result in less severe adverse effects for the patient, both short-term effects such as nausea and constipation, as well as long-term adverse effects on the endocrine and immunologic systems. This would be a highly significant advance in pain management."

Coop and his team will continue to test UMB 425 to determine an optimal ratio at which it acts on the targeted opioid receptors to maximize pain relief, while minimizing tolerance. The team's ultimate goal is to develop two compounds derived from UMB 425 that will lead to Phase I clinical trials.


Story Source:

The above story is based on materials provided by University of Maryland. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jason R. Healy, Padmavani Bezawada, Jihyun Shim, Jace W. Jones, Maureen A. Kane, Alexander D. MacKerell, Andrew Coop, Rae R. Matsumoto. Synthesis, Modeling, and Pharmacological Evaluation of UMB 425, a Mixed μ Agonist/δ Antagonist Opioid Analgesic with Reduced Tolerance Liabilities. ACS Chemical Neuroscience, 2013; 130611155052001 DOI: 10.1021/cn4000428

Cite This Page:

University of Maryland. "Promising chronic pain drug developed." ScienceDaily. ScienceDaily, 28 August 2013. <www.sciencedaily.com/releases/2013/08/130828172821.htm>.
University of Maryland. (2013, August 28). Promising chronic pain drug developed. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2013/08/130828172821.htm
University of Maryland. "Promising chronic pain drug developed." ScienceDaily. www.sciencedaily.com/releases/2013/08/130828172821.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins