Featured Research

from universities, journals, and other organizations

Oxygen 'sponge' presents path to better catalysts, energy materials

Date:
August 28, 2013
Source:
Oak Ridge National Laboratory
Summary:
Scientists have developed a new oxygen “sponge” that can easily absorb or shed oxygen atoms at low temperatures. Materials with these novel characteristics would be useful in devices such as rechargeable batteries, sensors, gas converters and fuel cells.

This schematic depicts a new ORNL-developed material that can easily absorb or shed oxygen atoms.
Credit: Image courtesy of Oak Ridge National Laboratory

Scientists at the Department of Energy's Oak Ridge National Laboratory have developed a new oxygen "sponge" that can easily absorb or shed oxygen atoms at low temperatures. Materials with these novel characteristics would be useful in devices such as rechargeable batteries, sensors, gas converters and fuel cells.

Materials containing atoms that can switch back and forth between multiple oxidation states are technologically important but very rare in nature, says ORNL's Ho Nyung Lee, who led the international research team that published its findings in Nature Materials.

"Typically, most elements have a stable oxidation state, and they want to stay there," Lee said. "So far there aren't many known materials in which atoms are easily convertible between different valence states. We've found a chemical substance that can reversibly change between phases at rather low temperatures without deteriorating, which is a very intriguing phenomenon."

Many energy storage and sensor devices rely on this valence-switching trick, known as a reduction-oxidation or "redox" reaction. For instance, catalytic gas converters use platinum-based metals to transform harmful emissions such as carbon monoxide into nontoxic gases by adding oxygen. Less expensive oxide-based alternatives to platinum usually require very high temperatures -- at least 600 to 700 degrees Celsius -- to trigger the redox reactions, making such materials impractical in conventional applications.

"We show that our multivalent oxygen sponges can undergo such a redox process at as low as 200 degrees Celsius, which is comparable to the working temperature of noble metal catalysts," Lee said. "Granted, our material is not coming to your car tomorrow, but this discovery shows that multivalent oxides can play a pivotal role in future energy technologies."

The team's material consists of strontium cobaltite, which is known to occur in a preferred crystalline form called brownmillerite. Through an epitaxial stabilization process, the ORNL-led team discovered a new recipe to synthesize the material in a more desirable phase known as perovskite. The researchers have filed an invention disclosure on their findings.

"These two phases have very distinct physical properties," Lee said. "One is a metal, the other is an insulator. One responds to magnetic fields, the other does not -- and we can make it switch back and forth within a second at significantly reduced temperatures."

The international team's design and testing of this novel advanced material from scratch required multidisciplinary expertise and sophisticated tools from such places as Argonne National Laboratory and ORNL, including Argonne's Advanced Photon Source and ORNL's Center for Nanophase Materials Science, says Lee.

"As we showed in this study, only through the study of a well-defined system can we build a framework for the design of next generation energy materials," said coauthor John Freeland of Argonne. "This insight was made possible by merging the capabilities at Oak Ridge and Argonne national labs for advanced synthesis and characterization of novel materials."


Story Source:

The above story is based on materials provided by Oak Ridge National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Hyoungjeen Jeen, Woo Seok Choi, Michael D. Biegalski, Chad M. Folkman, I-Cheng Tung, Dillon D. Fong, John W. Freeland, Dongwon Shin, Hiromichi Ohta, Matthew F. Chisholm, Ho Nyung Lee. Reversible redox reactions in an epitaxially stabilized SrCoOx oxygen sponge. Nature Materials, 2013; DOI: 10.1038/nmat3736

Cite This Page:

Oak Ridge National Laboratory. "Oxygen 'sponge' presents path to better catalysts, energy materials." ScienceDaily. ScienceDaily, 28 August 2013. <www.sciencedaily.com/releases/2013/08/130828172823.htm>.
Oak Ridge National Laboratory. (2013, August 28). Oxygen 'sponge' presents path to better catalysts, energy materials. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2013/08/130828172823.htm
Oak Ridge National Laboratory. "Oxygen 'sponge' presents path to better catalysts, energy materials." ScienceDaily. www.sciencedaily.com/releases/2013/08/130828172823.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) — Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins