Featured Research

from universities, journals, and other organizations

Scientists detail critical role of gene in many lung cancer cases

Date:
August 29, 2013
Source:
Scripps Research Institute
Summary:
Scientists have shown that a well-known cancer-causing gene implicated in a number of malignancies plays a far more critical role in non-small cell lung cancer, the most common form of the disease, than previously thought.

Scientists from the Florida campus of The Scripps Research Institute (TSRI) have shown that a well-known cancer-causing gene implicated in a number of malignancies plays a far more critical role in non-small cell lung cancer, the most common form of the disease, than previously thought.

Related Articles


These findings establish the gene as a critical regulator of lung cancer tumor growth. This new information could turn out to be vital for the design of potentially new therapeutic strategies for a group of patients who represent almost half of non-small cell lung cancer cases.

In the study, published online ahead of print by the journal Cancer Research, the scientists found that presence of known oncogene Notch 1 is required for survival of cancer cells. In both cell and animal model studies, disabling Notch 1 leads to a rise in cancer cell death.

"While Notch signaling has emerged as an important target in many types of cancer, current methodologies that target that pathway affect all members of the Notch family, and this has been associated with toxicity," said Joseph Kissil, a TSRI associate professor who led the study. "We were able to identify Notch 1 as the critical oncogene to target, at least in a common form of lung cancer."

The new findings show that Notch1 is required for initial tumor growth, as it represses p53, a well-known tumor suppressor protein that has been called the genome's guardian because of its role in preventing mutations. The p53 protein can repair damaged cells or force them to die through apoptosis -- programmed cell death.

Using animal models, the study shows that inhibition of Notch1 signaling results in a dramatic decrease in initial tumor growth. Moreover, disruption of Notch 1 induces apoptosis by increasing p53 stability -- substantially increasing its biological half-life, for example.

These findings provide important clinical insights into the correlation between Notch1 activity and the poor prognosis of non-small cell lung cancer patients who carry the non-mutated form of the p53 gene. "If you look at lung cancer patient populations, Notch signaling alone isn't a prognostic indicator, but if you look at p53-positive patients it is," Kissil said.


Story Source:

The above story is based on materials provided by Scripps Research Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. S. Licciulli, J. L. Avila, L. Hanlon, S. Troutman, M. Cesaroni, S. Kota, B. Keith, M. C. Simon, E. Pure, F. Radtke, A. J. Capobianco, J. L. Kissil. Notch1 is required for Kras-induced lung adenocarcinoma and controls tumor cell survival via p53. Cancer Research, 2013; DOI: 10.1158/0008-5472.CAN-13-1384

Cite This Page:

Scripps Research Institute. "Scientists detail critical role of gene in many lung cancer cases." ScienceDaily. ScienceDaily, 29 August 2013. <www.sciencedaily.com/releases/2013/08/130829092643.htm>.
Scripps Research Institute. (2013, August 29). Scientists detail critical role of gene in many lung cancer cases. ScienceDaily. Retrieved December 17, 2014 from www.sciencedaily.com/releases/2013/08/130829092643.htm
Scripps Research Institute. "Scientists detail critical role of gene in many lung cancer cases." ScienceDaily. www.sciencedaily.com/releases/2013/08/130829092643.htm (accessed December 17, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, December 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
Flu Outbreak Closing Schools in Ohio

Flu Outbreak Closing Schools in Ohio

AP (Dec. 17, 2014) A wave of flu illnesses has forced some Ohio schools to shut down over the past week. State officials confirmed one pediatric flu-related death, a 15-year-old girl in southern Ohio. (Dec. 17) Video provided by AP
Powered by NewsLook.com
Feeling Young Might Mean A Longer Life Span

Feeling Young Might Mean A Longer Life Span

Newsy (Dec. 16, 2014) A study published in JAMA shows that people who feel younger than their chronological age might actually live longer than those who feel old. Video provided by Newsy
Powered by NewsLook.com
2016 Olympic Waters Feature 'Super Bacteria' Researchers Say

2016 Olympic Waters Feature 'Super Bacteria' Researchers Say

Newsy (Dec. 16, 2014) Researchers found the bacteria Klebsiella pneumoniae Carbapenemase in the water where the 2016 Olympics is supposed to take place. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins