Featured Research

from universities, journals, and other organizations

New component in the quantum electronics toolbox: Interface between atoms and superconductors

Date:
August 29, 2013
Source:
Universitaet Tübingen
Summary:
The coherence of quantum systems is the foundation upon which hardware for future information technologies is based. Quantum information is carried by units called quantum bits, or qubits. They can be used to secure electronic communications -- and they enable very fast searches of databases. But qubits are also very unstable. Scientists have now developed a new electronic component which will help to deal with this problem.

Quantum electronics with atoms and superconductors: Rubidium atoms are magnetically suspended above a superconducting microchip, creating a new interface between superconducting nanoelectronics and the atoms. This means the advantages of both systems may be harnessed to process, transfer and store quantum information.
Credit: CQ Center for Collective Quantum Phenomena/University of Tübingen

The coherence of quantum systems is the foundation upon which hardware for future information technologies is based. Quantum information is carried by units called quantum bits, or qubits. They can be used to secure electronic communications -- and they enable very fast searches of databases. But qubits are also very unstable. Professors József Fortágh, Dieter Kölle and Reinhold Kleiner of Tübingen's Institute of Physics have developed a new electronic component which will help to deal with this problem. The researchers' long-term goal is to process, transfer and store superposition states such as the overlapping of the binary digits zero and one.

The initial results of their work are to be published in the journal Nature Communications on 29 August 2013.

The researchers aim to link two systems and draw on the advantages of both. Superconducting circuits, which are structured on microchips using standard technology, can process quantum information quickly but cannot store it for very long. By contrast, atoms, nature's smallest electric circuits, can serve as a natural quantum storage unit. "In the future, this combination will allow us to transfer information from superconducting circuits into ensembles of atoms and store it," says Professor József Fortágh.

The atoms are trapped in a magnetic field above the surface of the microchip. Because superconductors allow an electric current to flow without resistance, the current does not become weaker in a superconducting ring. Institute of Physics PhD students Helge Hattermann and Daniel Bothner along with postdoctoral researcher Simon Bernon have made use of this to construct a complex superconducting ring-circuit and a particularly stable storage space for atoms. And the researchers can test how long atoms remain in the quantum superposition states within the system -- by using the atoms themselves as a clock.

Today's definition of a second is given to us by the caesium atom, with a frequency of approximately nine billion Hertz per second, corresponding to the transition between its two ground states. Rubidium, the atom used for the experiments in Tübingen, is a secondary frequency standard. An atomic clock's precision is based on the constant transition between quantum states. Just like the swinging of the pendulum of a grandfather clock, an atomic clock's oscillations become weaker with time -- when the quantum superpositions decay.

The atomic clock integrated into the superconducting chip indicates that the atoms suspended above the chip remain in their quantum superposition states for several seconds. By comparison, solid-state quantum storage retains coherence for only microseconds. "This result paves the way for new quantum electronic components for information processing systems," József Fortágh says. The researchers at the University of Tübingen's CQ Center for Collective Quantum Phenomena are now planning experiments on atoms in superconducting microwave resonators -- which could serve as a shuttle for data between integrated circuits and atoms.

This research is sponsored by the German Research Foundation, (DFG collaborative research center TRR21) and the European Research Council (ERC).


Story Source:

The above story is based on materials provided by Universitaet Tübingen. Note: Materials may be edited for content and length.


Journal Reference:

  1. Simon Bernon, Helge Hattermann, Daniel Bothner, Martin Knufinke, Patrizia Weiss, Florian Jessen, Daniel Cano, Matthias Kemmler, Reinhold Kleiner, Dieter Koelle, József Fortágh. Manipulation and coherence of ultra-cold atoms on a superconducting atom chip. Nature Communications, 2013; 4 DOI: 10.1038/ncomms3380

Cite This Page:

Universitaet Tübingen. "New component in the quantum electronics toolbox: Interface between atoms and superconductors." ScienceDaily. ScienceDaily, 29 August 2013. <www.sciencedaily.com/releases/2013/08/130829093043.htm>.
Universitaet Tübingen. (2013, August 29). New component in the quantum electronics toolbox: Interface between atoms and superconductors. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2013/08/130829093043.htm
Universitaet Tübingen. "New component in the quantum electronics toolbox: Interface between atoms and superconductors." ScienceDaily. www.sciencedaily.com/releases/2013/08/130829093043.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) — Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) — TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) — Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) — When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins