Featured Research

from universities, journals, and other organizations

Inflammatory protein converts glioblastoma cells into most aggressive version

Date:
August 29, 2013
Source:
University of Texas M. D. Anderson Cancer Center
Summary:
A prominent protein activated by inflammation is the key instigator that converts glioblastoma multiforme cells to their most aggressive, untreatable form and promotes resistance to radiation therapy.

A prominent protein is the key instigator that converts glioblastoma multiforme cells to their most aggressive, untreatable form.

A prominent protein activated by inflammation is the key instigator that converts glioblastoma multiforme cells to their most aggressive, untreatable form and promotes resistance to radiation therapy, an international team lead by researchers at The University of Texas MD Anderson Cancer Center reported online today in the journal Cancer Cell.

The discovery by scientists and physicians points to new ways to increase radiation effectiveness and potentially block or reverse progression of glioblastoma multiforme, the most common and lethal form of brain tumor.

"We know that the mesenchymal (MES) subgroup of glioblastoma cells is the most aggressive subgroup clinically," said co-senior author Ken Aldape, M.D., chair and professor of Pathology and Kenneth D. Muller Professor in Tumor Genetics. "This paper shows that the NF-kB pathway causes cells to change to that MES subgroup."

This conversion leads to radiation resistance.

"The pathway we identified serves as an escape mechanism for tumors," said lead author Krishna Bhat, Ph.D., assistant professor of Pathology. "In newly diagnosed patients, even before treatment, these cells already are poised to meet radiation therapy challenges."

NF-ƙB-driven cell change starts outside the tumor

NF-ƙB activation is stimulated by inflammation, which occurs in the tumor cell's microenvironment.

"The shift of tumor cells to a MES type, characterized gene expression associated with invasion and new blood vessel formation, leads to radiation resistance," said co-senior author Erik Sulman, M.D., Ph.D., assistant professor of Radiation Oncology. "This suggests blocking the inflammatory response to make tumors more sensitive to standard radiation treatment may improve outcomes for patients."

Standard care for glioblastoma is surgery, followed by radiation and chemotherapy and then treatment with temozolomide. An estimated 23,270 people will receive a glioblastoma diagnosis in 2013 and about 14,000 people will die of the disease. Median survival is about one year.

Cell line, mouse model show something missing

"No one really knows how glioblastoma progresses from its early stages because 90-95 percent of cases are diagnosed without prior history of a lower grade glioma," Bhat said. Of these about 50 percent belong to the MES subgroup. A previous study had shown that glioblastomas with a proneural (PN) type, have a much better prognosis. But these less-aggressive tumors tend to recur as the aggressive MES subtype after treatment."

Research at MD Anderson and other institutions identified the two distinct cell types based on genes expressed by each. "We haven't known what makes a cell evolve into the MES subtype," Bhat said.

Bhat took cells from 41 human glioblastoma samples and placed them in cell cultures. Of these, 33 developed into neurospheres, cells that take on stem-cell like characteristics. Microarray analysis of gene expression in the 17 fastest -expanding cell cultures divided them into two distinct groups: one cluster similar to the MES subtype and the other the PN subtype.

They analyzed expression of four genes commonly expressed by each subtype to see how the cultured cells matched up to their parental tumors.

Cue the surprise

All but two of the cell lines (70 percent) that originated from MES tumors lost their MES characteristics and acquired a PN signature. These results do not match the human experience, Bhat noted. Glioblastoma cells don't retreat from an aggressive to less aggressive state.

Either something in the cell culture system favored enrichment of the PN state, or most glioblastoma neurospheres exist in the less-aggressive PN state, and something in the tumor microenvironment triggers their reversible differentiation into the MES state. Placing the PN cells cultured from MES tumors in mice did not restore those cells to the parent tumor's more aggressive type.

Different responses to radiation treatment

The researchers implanted glioblastoma sphere culture grafts from MES and PN types in mice and then treated them with radiation.

Those with the PN type had increased survival after treatment compared to controls and had a dramatic accumulation of cells (48 to 78 percent) stuck in a specific phase of the cell cycle caused by irradiation, which lead to massive cell death.

Irradiating MES tumors produced no or minimal survival advantage and the percentages of cells arrested by treatment was reduced to 19-25 percent. The MES cells also showed an enhanced ability to repair damage caused by irradiation.

The Cancer Genome Atlas project for glioblastoma had previously found that genes in the TNFα receptor family and the NF-ƙB pathway are enriched in MES subclass tumors that also express high levels of the surface receptor CD44. This team found the exact same pathway had been turned on in the MES cells in their study.

Subsequent experiments found:

• Treating PN cells with TNFα caused a dramatic increase in CD44 expression. This effect could be reversed by impeding NF-ƙB. • Pretreating PN cells with TNF-alpha before radiation treatment greatly reduced cell damage. • NF-ƙB controls three main transcription factors known to produce the MES cell signature and forces conversion to MES by inducing those factors.

MES cells, CD44 levels, NF-kB activation predict human radiation response

In a cohort of newly diagnosed glioblastoma patients, the team found that those in the MES subgroup, with high levels of CD44 and activated NF-ƙB had poorer response to radiation and reduced survival.

A separate analysis of PN to MES transition in human tumors showed that regions with higher MES signatures had greater invasion by immune cells called macrophages /microglia -- elements of the glioblastoma microenvironment -- than did PN areas.

"We know we have to control inflammation in this disease," Bhat said. NF-ƙB is known to play an important role in promoting inflammation in multiple cell types. "Surprisingly we found that activation of NF-ƙB was prevalent in the MES subtype even before surgery and radiation, which in turn can cause inflammation and further activation of NF-ƙB." Bhat is investigating downstream targets of NF-ƙB that promote radiation resistance in glioblastoma.

Inhibitors of NF-ƙB are in clinical trials for inflammatory and autoimmune diseases, Aldape noted.


Story Source:

The above story is based on materials provided by University of Texas M. D. Anderson Cancer Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. KrishnaP.L. Bhat, Veerakumar Balasubramaniyan, Brian Vaillant, Ravesanker Ezhilarasan, Karlijn Hummelink, Faith Hollingsworth, Khalida Wani, Lindsey Heathcock, JohannaD. James, LindseyD. Goodman, Siobhan Conroy, Lihong Long, Nina Lelic, Suzhen Wang, Joy Gumin, Divya Raj, Yoshinori Kodama, Aditya Raghunathan, Adriana Olar, Kaushal Joshi, ChristopherE. Pelloski, Amy Heimberger, SeHoon Kim, DanielP. Cahill, Ganesh Rao, WilfredF.A. DenDunnen, HendrikusW.G.M. Boddeke, HeidiS. Phillips, Ichiro Nakano, FrederickF. Lang, Howard Colman, ErikP. Sulman, Kenneth Aldape. Mesenchymal Differentiation Mediated by NF-κB Promotes Radiation Resistance in Glioblastoma. Cancer Cell, 2013; DOI: 10.1016/j.ccr.2013.08.001

Cite This Page:

University of Texas M. D. Anderson Cancer Center. "Inflammatory protein converts glioblastoma cells into most aggressive version." ScienceDaily. ScienceDaily, 29 August 2013. <www.sciencedaily.com/releases/2013/08/130829214257.htm>.
University of Texas M. D. Anderson Cancer Center. (2013, August 29). Inflammatory protein converts glioblastoma cells into most aggressive version. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2013/08/130829214257.htm
University of Texas M. D. Anderson Cancer Center. "Inflammatory protein converts glioblastoma cells into most aggressive version." ScienceDaily. www.sciencedaily.com/releases/2013/08/130829214257.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins