Featured Research

from universities, journals, and other organizations

Electronics advance moves closer to a world beyond silicon

Date:
September 4, 2013
Source:
Oregon State University
Summary:
Researchers have made a significant advance in the function of metal-insulator-metal, or MIM diodes, a technology premised on the assumption that the speed of electrons moving through silicon is simply too slow. For the extraordinary speed envisioned in some future electronics applications, these innovative diodes solve problems that would not be possible with silicon-based materials as a limiting factor.

MIIM diode.
Credit: Image courtesy of Oregon State University

Researchers in the College of Engineering at Oregon State University have made a significant advance in the function of metal-insulator-metal, or MIM diodes, a technology premised on the assumption that the speed of electrons moving through silicon is simply too slow.

Related Articles


For the extraordinary speed envisioned in some future electronics applications, these innovative diodes solve problems that would not be possible with silicon-based materials as a limiting factor.

The new diodes consist of a "sandwich" of two metals, with two insulators in between, to form "MIIM" devices. This allows an electron not so much to move through materials as to tunnel through insulators and appear almost instantaneously on the other side. It's a fundamentally different approach to electronics.

The newest findings, published in Applied Physics Letters, have shown that the addition of a second insulator can enable "step tunneling," a situation in which an electron may tunnel through only one of the insulators instead of both. This in turn allows precise control of diode asymmetry, non-linearity, and rectification at lower voltages.

"This approach enables us to enhance device operation by creating an additional asymmetry in the tunnel barrier," said John F. Conley, Jr., a professor in the OSU School of Electrical Engineering and Computer Science. "It gives us another way to engineer quantum mechanical tunneling and moves us closer to the real applications that should be possible with this technology."

OSU scientists and engineers, who only three years ago announced the creation of the first successful, high-performance MIM diode, are international leaders in this developing field. Conventional electronics based on silicon materials are fast and inexpensive, but are reaching the top speeds possible using those materials. Alternatives are being sought.

More sophisticated microelectronic products could be possible with the MIIM diodes -- not only improved liquid crystal displays, cell phones and TVs, but such things as extremely high-speed computers that don't depend on transistors, or "energy harvesting" of infrared solar energy, a way to produce energy from Earth as it cools during the night.

MIIM diodes could be produced on a huge scale at low cost, from inexpensive and environmentally benign materials. New companies, industries and high-tech jobs may ultimately emerge from advances in this field, OSU researchers say.

The work by Conley and OSU doctoral student Nasir Alimardani has been supported by the National Science Foundation, the U.S. Army Research Laboratory and the Oregon Nanoscience and Microtechnologies Institute.


Story Source:

The above story is based on materials provided by Oregon State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. N. Alimardani, J. F. Conley. Step tunneling enhanced asymmetry in asymmetric electrode metal-insulator-insulator-metal tunnel diodes. Applied Physics Letters, 2013; 102 (14): 143501 DOI: 10.1063/1.4799964

Cite This Page:

Oregon State University. "Electronics advance moves closer to a world beyond silicon." ScienceDaily. ScienceDaily, 4 September 2013. <www.sciencedaily.com/releases/2013/09/130904161645.htm>.
Oregon State University. (2013, September 4). Electronics advance moves closer to a world beyond silicon. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2013/09/130904161645.htm
Oregon State University. "Electronics advance moves closer to a world beyond silicon." ScienceDaily. www.sciencedaily.com/releases/2013/09/130904161645.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
3D Printed Cookies Just in Time for Christmas

3D Printed Cookies Just in Time for Christmas

Reuters - Innovations Video Online (Dec. 18, 2014) A tech company in Spain have combined technology with cuisine to develop the 'Foodini', a 3D printer designed to print the perfect cookie for Santa. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
First Etihad Superjumbo Flight in December

First Etihad Superjumbo Flight in December

AFP (Dec. 18, 2014) The first flight of Etihad Airways' long-awaited Airbus A380 superjumbo will take place later in December, the Abu Dhabi carrier said Thursday, also announcing its first Boeing 787 Dreamliner route. Duration: 01:09 Video provided by AFP
Powered by NewsLook.com
Ford Expands Air Bag Recall Nationwide

Ford Expands Air Bag Recall Nationwide

Newsy (Dec. 18, 2014) The automaker added 447,000 vehicles to its recall list, bringing the total to more than 502,000. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins