Featured Research

from universities, journals, and other organizations

Cell death protein could offer new anti-inflammatory drug target

Date:
September 5, 2013
Source:
Walter and Eliza Hall Institute of Medical Research
Summary:
Scientists have revealed the structure of a protein that is essential for triggering a form of programmed cell death called necroptosis, making possible the development of new drugs to treat chronic inflammatory diseases such as Crohn’s disease and rheumatoid arthritis.

MLKL and RIPK3.
Credit: Image courtesy of Walter and Eliza Hall Institute of Medical Research

Scientists in Melbourne, Australia, have revealed the structure of a protein that is essential for triggering a form of programmed cell death called necroptosis, making possible the development of new drugs to treat chronic inflammatory diseases such as Crohn's disease and rheumatoid arthritis.

Dr James Murphy, Associate Professor John Silke, Dr Joanne Hildebrand, Dr Peter Czabotar, Professor Warren Alexander and colleagues from the Walter and Eliza Hall Institute have shown that the protein MLKL plays a crucial role in the signalling pathways that trigger a recently discovered cell death pathway called necroptosis. The results were published today in the journal Immunity.

Usually, when a cell detects that it is infected by a virus or bacteria or has other irreparable damage it self-destructs through a process called apoptosis. But Associate Professor Silke said some bacteria and viruses had developed ways of preventing this cell suicide, also allowing the invaders to survive. It is at this point that the 'back up' necroptosis pathway might be activated.

"During necroptosis the cell still self-destructs but in doing so it also sends an 'SOS' to the immune system to tell it that something has gone wrong with the cell's normal cell death process of apoptosis. So internally, the cell is still doing its best to self-destruct in an orderly and programmed way, but it is simultaneously sending signals to the immune system to mount a response to the invaders."

However there are times when the necroptosis pathway may be inappropriately activated, sending messages to the immune system that promote inflammation and the development of inflammatory diseases.

Dr Murphy said the discovery of MLKL's role in activating the necroptosis pathway was an important step in understanding this cell death pathway and its role in disease. "Necroptosis has only been defined in the past 10 years and the role MLKL plays was only discovered in 2012," Dr Murphy said. "This study provides the first genetic proof that MLKL is required for necroptosis as well as the first full-length, atomic level, three-dimensional structure of a protein that regulates necroptosis. These discoveries are really exciting because they give us a new target to look at for developing treatments for people who suffer from an inflammatory disease."

The three-dimensional images of MLKL, which were obtained using the Australian Synchrotron, revealed an interesting detail about the protein, Dr Murphy said. "The structure revealed that MLKL is a 'dead enzyme', making it different from the other proteins in the signalling pathway," Dr Murphy said. "We discovered that MLKL needs to be 'switched on' before it can activate necroptosis. MLKL could therefore be a perfect target for treatments because it is different from almost every other cell-signalling protein, making it easier to develop highly specific drugs and limiting potential side effects."

Associate Professor Silke said the team was now trying to determine the 'on' and 'off' states of MLKL and how it could be modified to treat disease. "We are now trying to work out what MLKL looks like at the atomic level when it is switched 'on' so that we can begin to develop drugs that will block it," Associate Professor Silke said. "We are excited about this fundamental discovery and, with colleagues at the institute, we are already using this knowledge to develop specific, drug-like molecules to test in disease models. This could directly lead to treatments that will help patients who have chronic inflammatory diseases including rheumatoid arthritis, inflammatory bowel syndrome, Crohn's disease and psoriasis."

The research was supported by the Australian National Health and Medical Research Council, Australian Research Council and the Victorian Government.


Story Source:

The above story is based on materials provided by Walter and Eliza Hall Institute of Medical Research. Note: Materials may be edited for content and length.


Journal Reference:

  1. JamesM. Murphy, PeterE. Czabotar, JoanneM. Hildebrand, IsabelleS. Lucet, Jian-Guo Zhang, Silvia Alvarez-Diaz, Rowena Lewis, Najoua Lalaoui, Donald Metcalf, AndrewI. Webb, SamuelN. Young, LeilaN. Varghese, GillianM. Tannahill, EsmeC. Hatchell, IanJ. Majewski, Toru Okamoto, RenwickC.J. Dobson, DouglasJ. Hilton, JeffreyJ. Babon, NicosA. Nicola, Andreas Strasser, John Silke, WarrenS. Alexander. The Pseudokinase MLKL Mediates Necroptosis via a Molecular Switch Mechanism. Immunity, 2013; DOI: 10.1016/j.immuni.2013.06.018

Cite This Page:

Walter and Eliza Hall Institute of Medical Research. "Cell death protein could offer new anti-inflammatory drug target." ScienceDaily. ScienceDaily, 5 September 2013. <www.sciencedaily.com/releases/2013/09/130905133922.htm>.
Walter and Eliza Hall Institute of Medical Research. (2013, September 5). Cell death protein could offer new anti-inflammatory drug target. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2013/09/130905133922.htm
Walter and Eliza Hall Institute of Medical Research. "Cell death protein could offer new anti-inflammatory drug target." ScienceDaily. www.sciencedaily.com/releases/2013/09/130905133922.htm (accessed August 22, 2014).

Share This




More Health & Medicine News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Two US Ebola Patients Leave Hospital Free of the Disease

Two US Ebola Patients Leave Hospital Free of the Disease

AFP (Aug. 21, 2014) Two American missionaries who were sickened with Ebola while working in Liberia and were treated with an experimental drug are doing better and have left the hospital, doctors say on August 21, 2014. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
Cadavers, a Teen, and a Medical School Dream

Cadavers, a Teen, and a Medical School Dream

AP (Aug. 21, 2014) Contains graphic content. He's only 17. But Johntrell Bowles has wanted to be a doctor from a young age, despite the odds against him. He was recently the youngest participant in a cadaver program at the Indiana University NW medical school. (Aug. 21) Video provided by AP
Powered by NewsLook.com
American Ebola Patients Released: What Cured Them?

American Ebola Patients Released: What Cured Them?

Newsy (Aug. 21, 2014) It's unclear whether the American Ebola patients' recoveries can be attributed to an experimental drug or early detection and good medical care. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins