Featured Research

from universities, journals, and other organizations

Tiny diamonds to boost treatment of chemoresistant leukemia

Date:
September 11, 2013
Source:
National University of Singapore
Summary:
By binding multiple molecules of a common leukemia drug with nanodiamonds, scientists have managed to boost the delivery of the drug to leukemic cells and retain the drug within the cells to combat the cancer.

By binding multiple molecules of Daunorubicin with nanodiamonds, scientists from NUS and UCLA managed to boost the delivery of the drug to leukemic cells and retain the drug within the cells to combat the cancer.
Credit: Han B. Man and Hansung Kim

By binding multiple molecules of a common leukemia drug with nanodiamonds, scientists from the National University of Singapore (NUS) and University of California, Los Angeles (UCLA) managed to boost the delivery of the drug to leukemic cells and retain the drug within the cells to combat the cancer.

This novel discovery, reported for the first time, addresses one of the major challenges in the treatment of leukemia where the cancer cells develop ways to pump drugs out of the body before they can do their job, particularly after they are exposed to chemotherapeutics.

Developed by Dr Edward Chow, Principal Investigator at the Cancer Science Institute of Singapore and Assistant Professor at the Department of Pharmacology, Yong Loo Lin School of Medicine at NUS, in collaboration with Professor Dean Ho of the UCLA School of Dentistry, this innovation shows promise for greater efficacy in treating leukemia, particularly in non-adherent cells.

The findings were first published online in the medical journal Nanomedicine: Nanotechnology, Biology, and Medicine.

When leukemia becomes drug-resistant

Daunorubicin is currently one of the most common drugs used to treat leukemia. The drug works by slowing down or stopping cancer cells from growing, causing many of them to die. It is also common, however, for leukemia to become resistant to this drug after treatment.

One mechanism by which this opposition, commonly known as chemoresistance, happens is through the expression of drug transporter pumps in leukemia cells that actively pump out chemotherapeutics, including Daunorubicin.

Innovative use of nanodiamonds

Current approaches to neutralising chemoresistance have centred on developing competitive inhibitors. These efforts have limited success, with challenges like high toxicity levels and less-than-promising results during clinical trials.

The team of scientists from NUS and UCLA turned to nanodiamonds, which are tiny, carbon-based particles that are 2 to 8 nanometers in diameter, as an option to address chemoresistance. Dr Chow studied the biological basis of how nanodiamonds can potentially overcome chemoresistance.

The scientists bound the surfaces of nanodiamonds with Daunorubicin, and the hybrid nanodiamond-drug complexes were introduced to leukemic cells. The research team found that nanodiamonds could carry the drug to the cancer cells without being pumped out. Due to their non-invasive sizes and unique surface features, nanodiamonds can be easily released without blocking up blood vessels.

Dr Chow said, "The use of nanodiamonds offers a promising combination of biocompatibility and the capability to enhance therapeutic efficacy. Furthermore, our initial safety tests both in vitro and in vivo indicate that they are well tolerated which is a promising step towards continued translational development."

"Nanodiamonds are promising therapeutic vehicles, and one of our current goals is to determine which drugs would be optimally delivered by the nanodiamond towards specific disease models that would best benefit a patient in the future," added Prof Ho, who is with the Division of Oral Biology and Medicine and is also Co-Director of the Jane and Jerry Weintraub Center for Reconstructive Biotechnology at the UCLA School of Dentistry. Dr Ho is also a Professor of Bioengineering at UCLA.

Further Research

The team noted that further development and safety evaluation of nanodiamond systems are necessary to realise their full potential. To further the research, the multi-disciplinary team of collaborators will be evaluating the drug-delivery complexes in clinical settings. They hope that their work can be translated into the clinic for use against leukemia that does not respond to Daunorubicin treatment. They are also look at applying the binding properties of nanodiamonds to other drugs.


Story Source:

The above story is based on materials provided by National University of Singapore. Note: Materials may be edited for content and length.


Journal Reference:

  1. Han B. Man, Hansung Kim, Ho-Joong Kim, Erik Robinson, Wing Kam Liu, Edward Kai-Hua Chow, Dean Ho. Synthesis of nanodiamond–daunorubicin conjugates to overcome multidrug chemoresistance in leukemia. Nanomedicine: Nanotechnology, Biology and Medicine, 2013; DOI: 10.1016/j.nano.2013.07.014

Cite This Page:

National University of Singapore. "Tiny diamonds to boost treatment of chemoresistant leukemia." ScienceDaily. ScienceDaily, 11 September 2013. <www.sciencedaily.com/releases/2013/09/130911092913.htm>.
National University of Singapore. (2013, September 11). Tiny diamonds to boost treatment of chemoresistant leukemia. ScienceDaily. Retrieved August 29, 2014 from www.sciencedaily.com/releases/2013/09/130911092913.htm
National University of Singapore. "Tiny diamonds to boost treatment of chemoresistant leukemia." ScienceDaily. www.sciencedaily.com/releases/2013/09/130911092913.htm (accessed August 29, 2014).

Share This




More Health & Medicine News

Friday, August 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Who Could Be Burnt by WHO's E-Cigs Move?

Who Could Be Burnt by WHO's E-Cigs Move?

Reuters - Business Video Online (Aug. 28, 2014) The World Health Organisation has called for the regulation of electronic cigarettes as both tobacco and medical products. Ciara Lee looks at the impact of the move on the tobacco industry. Video provided by Reuters
Powered by NewsLook.com
CDC Director On Ebola Outbreak: 'It's Worse Than I Feared'

CDC Director On Ebola Outbreak: 'It's Worse Than I Feared'

Newsy (Aug. 28, 2014) CDC director Tom Frieden says the Ebola outbreak is even worse than he feared. But he also said there's still hope to contain it. Video provided by Newsy
Powered by NewsLook.com
How A 'Rule Of Thumb' Could Slow Down Drinking

How A 'Rule Of Thumb' Could Slow Down Drinking

Newsy (Aug. 28, 2014) A study suggests people who follow a "rule of thumb" when pouring wine dispense less than those who don't have a particular amount in mind. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins