Featured Research

from universities, journals, and other organizations

Radiotherapy in girls and the risk of breast cancer later in life

Date:
September 11, 2013
Source:
DOE/Lawrence Berkeley National Laboratory
Summary:
Rsearchers have helped determine why exposing young women and girls under the age of 20 to ionizing radiation can substantially raise the risk of their developing breast cancer later in life.

This mammary gland agent-based model depicts the network structure at week three formed by cell agents that come together to form duct agents. In turn, duct agents organize into a network similar to the branched structure of the mammary gland.
Credit: Berkley Lab

Exposing young women and girls under the age of 20 to ionizing radiation can substantially raise the risk of their developing breast cancer later in life. Scientists may now know why. A collaborative study, in which Berkeley Lab researchers played a pivotal role, points to increased stem cell self-renewal and subsequent mammary stem cell enrichment as the culprits. Breasts enriched with mammary stem cells as a result of ionizing irradiation during puberty show a later-in-life propensity for developing ER negative tumors -- cells that do not have the estrogen receptor. Estrogen receptors -- proteins activated by the estrogen hormone -- are critical to the normal development of the breast and other female sexual characteristics during puberty.

"Our results are in agreement with epidemiology studies showing that radiation-induced human breast cancers are more likely to be ER negative than are spontaneous breast cancers," says Sylvain Costes, a biophysicist with Berkeley Lab's Life Sciences Division. "This is important because ER negative breast cancers are less differentiated, more aggressive, and often have a poor prognosis compared to the other breast cancer subtypes."

Costes and Jonathan Tang, also with Berkeley Lab's Life Sciences Division, were part of a collaboration led by Mary Helen Barcellos-Hoff, formerly with Berkeley Lab and now at the New York University School of Medicine, that investigated the so-called "window of susceptibility" known to exist between radiation treatments at puberty and breast cancer risk in later adulthood. The key to their success were two mammary lineage agent-based models (ABMs) they developed in which a system is modeled as a collection of autonomous decision-making entities called agents. One ABM simulated the effects of radiation on the mammary gland during either the developmental stages or during adulthood. The other simulated the growth dynamics of human mammary epithelial cells in culture after irradiation.

"Our mammary gland ABM consisted of millions of agents, with each agent representing either a mammary stem cell, a progenitor cell or a differentiated cell in the breast," says Tang. "We ran thousands of simulations on Berkeley Lab's Lawrencium supercomputer during which each agent continually assessed its situation and made decisions on the basis of a set of rules that correspond to known or hypothesized biological properties of mammary cells. The advantage of this approach is that it allows us to view the global consequences to the system that emerge over time from our assumptions about the individual agents. To our knowledge, our mammary gland model is the first multi-scale model of the development of full glands starting from the onset of puberty all the way to adulthood."

Epidemiological studies have shown that girls under 20 given radiotherapy treatment for disorders such as Hodgkin's lymphoma run about the same risk of developing breast cancer in their 40s as women who were born with a BRCA gene mutation. From their study, Costes, Tang and their collaboration partners concluded that self-renewal of stem cells was the most likely responsible mechanism.

"Stem cell self-renewal was the only mechanism in the mammary gland model that led to predictions that were consistent with data from both our in vivo mouse work and our in vitro experiments with MCF10A, a human mammary epithelial cell line," Tang says. "Additionally, our model predicts that this mechanism would only generate more stem cells during puberty while the gland is developing and considerable cell proliferation is taking place."

Costes and Tang are now looking for genetic or phenotypic biomarkers that would identify young girls who are at the greatest breast cancer risk from radiation therapy. The results of their study with Barcellos-Hoff and her research group show that the links between ionizing radiation and breast cancer extend beyond DNA damage and mutations.

"Essentially, exposure of the breast to ionizing radiation generates an overall biochemical signal that tells the system something bad happened," Costes says. "If exposure takes place during puberty, this signal triggers a regenerative response leading to a larger pool of stem cells, thereby increasing the chance of developing aggressive ER negative breast cancers later in life."


Story Source:

The above story is based on materials provided by DOE/Lawrence Berkeley National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jonathan Tang, Ignacio Fernandez-Garcia, Sangeetha Vijayakumar, Haydeliz Martinez-Ruiz, Irineu Illa-Bochaca, David H. Nguyen, Jian-Hua Mao, Sylvain V. Costes, Mary Helen Barcellos-Hoff. Irradiation of juvenile, but not adult, mammary gland increases stem cell self-renewal and estrogen receptor negative tumors. STEM CELLS, 2013; DOI: 10.1002/stem.1533

Cite This Page:

DOE/Lawrence Berkeley National Laboratory. "Radiotherapy in girls and the risk of breast cancer later in life." ScienceDaily. ScienceDaily, 11 September 2013. <www.sciencedaily.com/releases/2013/09/130911125053.htm>.
DOE/Lawrence Berkeley National Laboratory. (2013, September 11). Radiotherapy in girls and the risk of breast cancer later in life. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2013/09/130911125053.htm
DOE/Lawrence Berkeley National Laboratory. "Radiotherapy in girls and the risk of breast cancer later in life." ScienceDaily. www.sciencedaily.com/releases/2013/09/130911125053.htm (accessed October 23, 2014).

Share This



More Health & Medicine News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Fears Keep Guinea Hospitals Empty

Ebola Fears Keep Guinea Hospitals Empty

AP (Oct. 23, 2014) Fears of Ebola are keeping doctors and patients alike away from hospitals in the West African nation of Guinea. (Oct. 23) Video provided by AP
Powered by NewsLook.com
Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Working Mother (Oct. 22, 2014) Is your child ready? Video provided by Working Mother
Powered by NewsLook.com
U.S. Issues Ebola Travel Restrictions, Are Visa Bans Next?

U.S. Issues Ebola Travel Restrictions, Are Visa Bans Next?

Newsy (Oct. 22, 2014) Now that the U.S. is restricting travel from West Africa, some are dropping questions about a travel ban and instead asking about visa bans. Video provided by Newsy
Powered by NewsLook.com
More People Diagnosed With TB In 2013, But There's Good News

More People Diagnosed With TB In 2013, But There's Good News

Newsy (Oct. 22, 2014) The World Health Organizations says TB numbers rose in 2013, but it's partly due to better detection and more survivors. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins