Featured Research

from universities, journals, and other organizations

Fate of new genes cannot be predicted

Date:
September 13, 2013
Source:
Instituto Gulbenkian de Ciência (IGC)
Summary:
New versions of genes, called alleles, can appear by mutation in populations. Even when these new alleles turn the individuals carrying them more fit to survive and reproduce, the most likely outcome is that they will get lost from the populations. The theory on this topic is 90 years old and has become the cornerstone of modern population genetics, with studies on adaptation to novel environments and conservation of species being based on it. However, until now there were no explicit experimental tests of this theory.

New versions of genes, called alleles, can appear by mutation in populations. Even when these new alleles turn the individuals carrying them more fit to survive and reproduce, the most likely outcome is that they will get lost from the populations. The theory that explains these probabilities has been postulated by the scientist J.B.S. Haldane almost 90 years ago. This theory has become the cornerstone of modern population genetics, with studies on adaptation to novel environments and conservation of species, for example, being based on it. However, until now there were no explicit experimental tests of this theory.

The research team led by Henrique Teotónio, at the Instituto Gulbenkian de Ciência (IGC, Portugal), in collaboration with Isabel Gordo, also from the IGC, has now experimentally tested Haldane's theory. By performing competition tests in roundworms, they have confirmed this theory for the introduction of a new beneficial allele in a population. However, the researchers found that this theory cannot predict the ultimate fate of the allele. This study, published in the latest issue of the scientific journal Nature Communications*, contributes to a better comprehension of how a population can evolve, with implications for studies on how species adapt to changing environments or species conservation.

Haldane's theory could be experimentally tested because the researchers set up the ideal conditions with the roundworm Caenorhabditis elegans (C. elegans). These tiny organisms primarily reproduce by self-fertilization, which assures that genetic identity is maintained. Also, these organisms reproduce in a short timeframe, making possible the study of several generations. Taking advantage of C. elegans' characteristics, Ivo Chelo and Judit Nédli used two lines of C. elegans to establish competition assays and see which individuals could survive and reproduce better.

Chelo and colleagues started by verifying Haldane's theory at the stage of introducing a new allele in the population. They introduced 2 or 5 individuals from one line in a population of 1000 individuals from another line, and tested how those individuals invaded the population. They found out that when the invaders were more fit the introduction in the population of more individuals would lower their probability of extinction. They also confirmed that the probability of extinction is higher for deleterious alleles than for beneficial alleles. Nonetheless, less fit individuals could be kept in the population for a few generations at high frequencies, the more so if population sizes were small. The validity of Haldane's theory had been proved for the initial phases of invasion.

Then, the research team addressed the probability of fixation of a beneficial allele in the population, i.e., to have all individuals of the population carrying the new allele. They repeated the competition experiments between the two same lines of C. elegans, but this time used an initial higher number of invading individuals, to mimic a population in which the beneficial allele was already established. The researchers observed that the adaptive value of each allele, i.e., whether it behaves as beneficial or deleterious, depended on its frequency in the population. If its frequency was higher than 5% (when more than five different individuals in a population of 100 individuals), the allele was perceived as deleterious and it started to be eliminated by natural selection. But when the frequency was less than 5%, the allele was beneficial. The result of these complex dynamics is that genetic diversity could be maintained indefinitely, without one allele or the other ever being fixed in the population.

Ivo Chelo explains: "Our data suggests that the value a new allele brings to the individuals is not fixed. Populations are dynamic and complex with plenty of interactions between individuals and between these and the environment. Initial stages when the new alleles appear cannot tell us what the effects of the alleles will be a few generations later, when the population has already changed."

Henrique Teotónio adds: "To our knowledge, this is the first time anyone was able to directly test Haldane's theory. We have proved it correct for the initial stages, when a new allele appears in a population. But our results show that further empirical work and more theoretical models are required to accurately predict the fate of that allele over long time spans."


Story Source:

The above story is based on materials provided by Instituto Gulbenkian de Ciência (IGC). Note: Materials may be edited for content and length.


Journal Reference:

  1. Ivo M. Chelo, Judit Nédli, Isabel Gordo & Henrique Teotónio. An experimental test on the probability of extinction of new genetic variants. Nature Communications, September 2013 DOI: 10.1038/ncommsS3417

Cite This Page:

Instituto Gulbenkian de Ciência (IGC). "Fate of new genes cannot be predicted." ScienceDaily. ScienceDaily, 13 September 2013. <www.sciencedaily.com/releases/2013/09/130913085804.htm>.
Instituto Gulbenkian de Ciência (IGC). (2013, September 13). Fate of new genes cannot be predicted. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2013/09/130913085804.htm
Instituto Gulbenkian de Ciência (IGC). "Fate of new genes cannot be predicted." ScienceDaily. www.sciencedaily.com/releases/2013/09/130913085804.htm (accessed July 31, 2014).

Share This




More Plants & Animals News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Visitors Feel Part of the Pack at Wolf Preserve

Visitors Feel Part of the Pack at Wolf Preserve

AP (July 31, 2014) — Seacrest Wolf Preserve on the northern Florida panhandle allows more than 10,000 visitors each year to get up close and personal with Arctic and British Columbian Wolves. (July 31) Video provided by AP
Powered by NewsLook.com
Florida Panther Rebound Upsets Ranchers

Florida Panther Rebound Upsets Ranchers

AP (July 31, 2014) — With Florida's panther population rebounding, some ranchers complain the protected predators are once again killing their calves. (July 31) Video provided by AP
Powered by NewsLook.com
Dangerous Bacteria Kills One in Florida

Dangerous Bacteria Kills One in Florida

AP (July 31, 2014) — Sarasota County, Florida health officials have issued a warning against eating raw oysters and exposing open wounds to coastal and inland waters after a dangerous bacteria killed one person and made another sick. (July 31) Video provided by AP
Powered by NewsLook.com
Raw: Thousands Flocking to German Crop Circle

Raw: Thousands Flocking to German Crop Circle

AP (July 30, 2014) — Thousands of people are trekking to a Bavarian farmer's field to check out a mysterious set of crop circles. (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins