Featured Research

from universities, journals, and other organizations

Graphene photodetector integrated into silicon chip

Date:
September 16, 2013
Source:
Vienna University of Technology, TU Vienna
Summary:
Today, most information is transmitted by light -- for example, in optical fibers. Computer chips, however, work electronically. Somewhere between the optical data highway and the electronic chips, photons have to be converted into electrons using light-detectors. Scientists have now managed to combine a graphene photodetector with a standard silicon chip. It can transform light of all important frequencies used in telecommunications into electrical signals.

Graphene -- a two dimensional sheet made of carbon atoms -- can convert light into electrical current.
Credit: Image courtesy of Vienna University of Technology, TU Vienna

Today, most information is transmitted by light -- for example, in optical fibres. Computer chips, however, work electronically. Somewhere between the optical data highway and the electronic chips, photons have to be converted into electrons using light-detectors. Scientists at the Vienna University of Technology have now managed to combine a graphene photodetector with a standard silicon chip. It can transform light of all important frequencies used in telecommunications into electrical signals.

The scientific results have now been published in the journal Nature Photonics.

Computing Power Made of Carbon?

Both academia and the industry place high hopes in graphene. The material, which consists of a single layer of hexagonally arranged carbon atoms, has extraordinary properties. Two years ago, the team around Thomas Müller (Institute of Photonics, Vienna University of Technology) demonstrated that graphene is ideally suited to turn light into electrical current. "There are many materials that can transform light into electrical signals, but graphene allows for a particularly fast conversion," says Thomas Müller. So wherever large amounts of data are to be transmitted in a short period of time, graphene will in the future probably be the material of choice.

The researchers had to come a long way from the basic proof of what the material can do to actually using it in a chip -- but now they succeeded. The Viennese team worked together with researchers from the Johannes Kepler University in Linz.

"A narrow waveguide with a diameter of about 200 by 500 nanometers carries the optical signal to the graphene layer. There, the light is converted into an electrical signal, which can then be processed in the chip," Thomas Müller explains.

Versatile and Compact

There have already been attempts to integrate photodetectors made of other materials (such as Germanium) directly into a chip. However, these materials can only process light of a specific wavelength range. The researchers could show that graphene can convert all wavelengths which are used in telecommunications equally well.

The graphene photodetector is not only extremely fast, it can also be built in a particularly compact way. 20 000 detectors could fit onto a single chip with a surface area of one square centimetre. Theoretically, the chip could be supplied with data via 20 000 different information channels.

More Speed, Less Energy

"These technologies are not only important for transmitting data over large distances. Optical data transmission also becomes more and more important for communication within computers," says Thomas Müller. When large computer clusters work with many processor cores at the same time, a lot of information has to be transferred between the cores. As graphene allows switching between optical and electrical signals very quickly, this data can be exchanged optically. This speeds up the data exchange and requires much less electrical energy.


Story Source:

The above story is based on materials provided by Vienna University of Technology, TU Vienna. Note: Materials may be edited for content and length.


Journal Reference:

  1. Andreas Pospischil, Markus Humer, Marco M. Furchi, Dominic Bachmann, Romain Guider, Thomas Fromherz, Thomas Mueller. CMOS-compatible graphene photodetector covering all optical communication bands. Nature Photonics, 2013; DOI: 10.1038/nphoton.2013.240

Cite This Page:

Vienna University of Technology, TU Vienna. "Graphene photodetector integrated into silicon chip." ScienceDaily. ScienceDaily, 16 September 2013. <www.sciencedaily.com/releases/2013/09/130916090844.htm>.
Vienna University of Technology, TU Vienna. (2013, September 16). Graphene photodetector integrated into silicon chip. ScienceDaily. Retrieved August 29, 2014 from www.sciencedaily.com/releases/2013/09/130916090844.htm
Vienna University of Technology, TU Vienna. "Graphene photodetector integrated into silicon chip." ScienceDaily. www.sciencedaily.com/releases/2013/09/130916090844.htm (accessed August 29, 2014).

Share This




More Matter & Energy News

Friday, August 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) — Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) — Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) — Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) — An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins