Featured Research

from universities, journals, and other organizations

Promising new alloy for resistive switching memory: Tiny nanoscale filaments could be breakthrough for smaller, denser memory devices

Date:
September 20, 2013
Source:
American Institute of Physics (AIP)
Summary:
Researchers have tested a number of oxide materials for their promise in resistive switching memories, and now researchers in Singapore have demonstrated how conductive nano-filaments in amorphous titanium dioxide (TiO2) thin films could be utilized for resistive switching device applications.

(A) This is an illustration of the RRAM array with each memory cell comprising of one filament (sandwiched between two electrodes). In comparison to the surrounding insulator matrix, a number of nano-filaments are formed within the bulk oxide. (B) This is a basic element of a RRAM cell. Control of the electrical field leads to different resistance states. (C) Localized formation of conductive filaments in a TiO2 thin film is shown. The left shows the conductivity map recorded by CAFM. The right shows the same current mapping in 3D.
Credit: Yuanmin Du/National U.Singapore

Memory based on electrically-induced "resistive switching" effects have generated a great deal of interest among engineers searching for faster and smaller devices because resistive switching would allow for a higher memory density.

Related Articles


Researchers have tested a number of oxide materials for their promise in resistive switching memories, and now a team of researchers in Singapore have demonstrated how conductive nano-filaments in amorphous titanium dioxide (TiO2) thin films could be utilized for resistive switching device applications.

Yuanmin Du, Andrew Thye Shen Wee and researchers from the National University of Singapore and the Agency for Science, Technology and Research (A*STAR) of Singapore, describe their results in the journal AIP Advances, which is produced by AIP Publishing.

How Resistive Switching Works

The basic idea of a resistive switching device is that an oxide, which normally acts as an insulator, can be transformed into a conductor, creating a nanoscale filament by using a sufficiently high voltage. With a RRAM (Resistive Random-Access Memory) device comprising of a single filament, two distinct resistance states ("1" and "0") can be obtained through a simple process of filament rupture and re-formation.

The conductivity of the oxide thin films can be adjusted by changing the deposition conditions. "During the measurements of the as-deposited amorphous TiO2 based resistive switching devices, it was found that the oxide thin films initially have good conductivity. This implies that a high electrical breakdown initialization process is not required, as reported in many other switching devices using highly insulating oxide thin films," says Du. "The Conductive Atomic Force Microscopy (CAFM) experiments further confirmed that it is possible to form conductive filaments in oxide thin films through a localized transition by an electrical field."

This research team applied both CAFM and KPFM (Kelvin Probe Force Microscopy), a unique approach that allowed the explanation of the observed resistive switching phenomena. Instead of treating filamentary and interfacial effects separately as done previously, both effects were integrated into one filament-interface model, which could help guide the design of RRAM based devices.

The evidence of high density and uniformly distributed nano-filaments implies that high-density memory cells could be made using such oxide thin films. Such materials are promising for future applications. The small dimension of the formed filament provides great advantages over current technology, as Du explains. "In addition to TiO2, we believe that many other oxides could also have the similar properties."


Story Source:

The above story is based on materials provided by American Institute of Physics (AIP). Note: Materials may be edited for content and length.


Journal Reference:

  1. Yuanmin Du, Amit Kumar, Hui Pan, Kaiyang Zeng, Shijie Wang, Ping Yang, Andrew Thye Shen Wee. The resistive switching in TiO2 films studied by conductive atomic force microscopy and Kelvin probe force microscopy. AIP Advances, 2013; 3 (8): 082107 DOI: 10.1063/1.4818119

Cite This Page:

American Institute of Physics (AIP). "Promising new alloy for resistive switching memory: Tiny nanoscale filaments could be breakthrough for smaller, denser memory devices." ScienceDaily. ScienceDaily, 20 September 2013. <www.sciencedaily.com/releases/2013/09/130920111244.htm>.
American Institute of Physics (AIP). (2013, September 20). Promising new alloy for resistive switching memory: Tiny nanoscale filaments could be breakthrough for smaller, denser memory devices. ScienceDaily. Retrieved November 21, 2014 from www.sciencedaily.com/releases/2013/09/130920111244.htm
American Institute of Physics (AIP). "Promising new alloy for resistive switching memory: Tiny nanoscale filaments could be breakthrough for smaller, denser memory devices." ScienceDaily. www.sciencedaily.com/releases/2013/09/130920111244.htm (accessed November 21, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, November 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NSA Director: China Can Damage US Power Grid

NSA Director: China Can Damage US Power Grid

AP (Nov. 20, 2014) China and "one or two" other countries are capable of mounting cyberattacks that would shut down the electric grid and other critical systems in parts of the United States, according to Adm. Michael Rogers, director of the National Security Agency and hea Video provided by AP
Powered by NewsLook.com
Latest Minivan Crash Tests Aren't Pretty

Latest Minivan Crash Tests Aren't Pretty

Newsy (Nov. 20, 2014) Five minivans were put to the test in head-on crash simulations by the Insurance Institute for Highway Safety. Video provided by Newsy
Powered by NewsLook.com
Takata Offers "sincerest Condolences" To Victims of Malfunctioning Airbag

Takata Offers "sincerest Condolences" To Victims of Malfunctioning Airbag

Reuters - US Online Video (Nov. 20, 2014) U.S. Congress hears from a victim and company officials as it holds a hearing on the safety of Takata airbags after reports of injuries. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
DARPA Creates The Tech You Can Only Dream Of

DARPA Creates The Tech You Can Only Dream Of

Newsy (Nov. 20, 2014) Curious what a rocket-dodging car would look like? How about a robotic pack mule? Or maybe a wearable robot? These are a few of DARPA's projects. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins