Featured Research

from universities, journals, and other organizations

Immune system fights infection with performance enhancement

Date:
September 23, 2013
Source:
Walter and Eliza Hall Institute
Summary:
Researchers have found that even our immune system is subject to performance enhancement, with our bodies giving immune cells the boost they need to ensure the best team is selected to fight infections.

Melbourne researchers have found that even our immune system is subject to performance enhancement, giving immune cells the boost they need to ensure the best team is selected to fight infections.

Related Articles


The discovery could help in developing new treatments for blood diseases such as leukaemia and autoimmune diseases in which the body attacks its own tissues, such as diabetes or rheumatoid arthritis. It could also be used to enhance immune response to HIV and other chronic infections.

The finding, by researchers at the Walter and Eliza Hall Institute, builds on the 55-year-old theory of 'clonal selection' proposed by Australian Nobel Laureate and former institute director Sir Macfarlane Burnet. The theory revolutionised scientists' understanding of the immune system and how it functioned.

Dr Axel Kallies, Mr Kevin Man and colleagues from the institute's Molecular Immunology division led the research, which was published today in the journal Nature Immunology.

Burnet's theory of clonal selection proposed a new model of how the immune system recognised and fought foreign invaders, stating that each immune cell was programmed to recognise a specific infectious agent. Only when the right cell came into contact with an invader would it be activated and stimulated to 'clone' itself, generating large numbers of identical cells to fight the infection."

Studying a type of immune cell called killer T cells, Dr Kallies and his research team showed how the body identified which cells were the most capable of fighting a particular infection. Killer T cells are responsible for killing virus- or bacteria-infected cells, tumour cells and other damaged cells in the body.

"We found that a protein called IRF4 is activated in killer T cell 'clones' that are best equipped to recognise and fight an infection," Dr Kallies said. "Burnet's clonal selection theory tells us that the best T cell clones are selected by the immune system and produced in large numbers but, until now, we didn't know how this was regulated and what happened at the molecular level. We discovered that IRF4 controls the mass production of 'elite' killer T cells, as well as ensuring their survival and enhancing their performance by allowing them to take up large amounts of sugar and other nutrients."

The research team found that IRF4 was produced at different levels depending on how well the killer T cell recognised and bound infected cells. "IRF4 was produced at the highest levels in cells that were the best at recognising the foreign invader," Dr Kallies said. "This is how the immune system guarantees that the best killer T cells survive, producing an 'army of clones' that maintain their killer function to fight the infection. Without sufficient IRF4, the immune system fails to mount a productive immune response."

Dr Kallies said IRF4 was already being investigated by pharmaceutical companies as a potential therapeutic target. "We are slowly peeling back the layers of how immune cells develop, become activated and function," Dr Kallies said. "Targeting the IRF4 pathway could help us to control immune cells. For example, blocking the pathway to diminish proliferation of immune cells when they are out of control, as happens in blood cancers such as leukaemia or in autoimmunity. We could also enhance the activation of IRF4 to rescue T cell clones that are not functional, as a way of boosting the immune response to overwhelming infections such as HIV."


Story Source:

The above story is based on materials provided by Walter and Eliza Hall Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Kevin Man, Maria Miasari, Wei Shi, Annie Xin, Darren C Henstridge, Simon Preston, Marc Pellegrini, Gabrielle T Belz, Gordon K Smyth, Mark A Febbraio, Stephen L Nutt, Axel Kallies. The transcription factor IRF4 is essential for TCR affinity–mediated metabolic programming and clonal expansion of T cells. Nature Immunology, 2013; DOI: 10.1038/ni.2710

Cite This Page:

Walter and Eliza Hall Institute. "Immune system fights infection with performance enhancement." ScienceDaily. ScienceDaily, 23 September 2013. <www.sciencedaily.com/releases/2013/09/130923093047.htm>.
Walter and Eliza Hall Institute. (2013, September 23). Immune system fights infection with performance enhancement. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2013/09/130923093047.htm
Walter and Eliza Hall Institute. "Immune system fights infection with performance enhancement." ScienceDaily. www.sciencedaily.com/releases/2013/09/130923093047.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins