Featured Research

from universities, journals, and other organizations

3-D dynamic imaging of soft materials

Date:
October 3, 2013
Source:
DOE/Lawrence Berkeley National Laboratory
Summary:
Through a combination of transmission electron microscopy and ta unique graphene liquid cell, researchers have recorded the three-dimensional motion of DNA connected to gold nanocrystals, the first reported use of TEM for 3D dynamic imaging of soft materials.

This schematic of a graphene liquid cell shows multiple liquid pockets containing single nanoparticles, dimers composed of dsDNA bridges in different lengths, and trimers.
Credit: Image courtesy of DOE/Lawrence Berkeley National Laboratory

Autumn is usually not such a great time for big special effects movies as the summer blockbusters have faded and those for the holiday season have not yet opened. Fall is more often the time for thoughtful films about small subjects, which makes it perfect for the unveiling of a new movie produced by researchers at the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab). Through a combination of transmission electron microscopy (TEM) and their own unique graphene liquid cell, the researchers have recorded the three-dimensional motion of DNA connected to gold nanocrystals. This is the first time TEM has been used for 3D dynamic imaging of so-called soft materials.

"Our demonstration of 3D dynamic imaging goes beyond TEM's conventional use in seeing flat, dry samples and opens many exciting opportunities for studying the dynamics of biological macromolecular assemblies and artificial nanostructures," says physicist Alex Zettl, one of the leaders of this research. "These results were made possible by our novel graphene liquid cell, which can meet the challenges of using TEM to image soft materials."

Zettl, who holds joint appointments with Berkeley Lab's Materials Sciences Division and UC Berkeley's Physics Department where he directs the Center of Integrated Nanomechanical Systems, is one of the co-authors of a paper in NANO Letters describing this research. The paper is titled "3D Motion of DNA-Au Nanoconjugates in Graphene Liquid Cell Electron Microscopy."

Paul Alivisatos, Berkeley Lab Director and UC Berkeley's Samsung Distinguished Chair in Nanoscience and Nanotechnology, is the corresponding author. Other authors are Qian Chen, Jessica Smith, Jungwon Park, Kwanpyo Kim, Davy Ho and Haider Rasool.

The term "soft materials" takes in a vast variety of stuff, including DNA, proteins and other biological compounds, plastics, therapeutic drugs, flexible electronics, and certain types of photovoltaics. Despite their ubiquitous presence in our daily lives, soft materials pose many questions because the study of their dynamics at the nanoscale, especially biological systems, has been a challenge. TEM, in which a beam of electrons rather than light is used for illumination and magnification, provides the resolution for such studies but can only be used in a high vacuum as molecules in the air disrupt the electron beam. Since liquids evaporate in high vacuum, samples of soft materials, which have been described as "highly viscous fluids," must be hermetically sealed in special solid containers (called cells) with a viewing window before being imaged with TEM.

In the past, liquid cells featured silicon-based viewing windows whose thickness limited resolution and perturbed the natural state of the soft materials. Zettl and Alivisatos and their respective research groups overcame these limitations with the development of a liquid cell based on a graphene membrane only a single atom thick. This development was done in close cooperation with researchers at the National Center for Electron Microscopy (NCEM), which is located at Berkeley Lab.

"Our graphene liquid cells pushed the spatial resolution of liquid phase TEM imaging to the atomic scale but still focused on growth trajectories of metallic nanocrystals," says lead author Qian Chen, a postdoctoral fellow in Alivisatos's research group. "Now we've adopted the technique to imaging the 3D dynamics of soft materials, starting with double-strand (dsDNA) connected to gold nanocrystals and achieved nanometer resolution."

To create the cell, two opposing graphene sheets are bonded to one another by their van der Waals attraction. This forms a sealed nanoscale chamber and creates within the chamber a stable aqueous solution pocket approximately 100 nanometers in height and one micron in diameter. The single atom thick graphene membrane of the cells is essentially transparent to the TEM electron beam, minimizing the unwanted loss of imaging electrons and providing superior contrast and resolution compared to silicon-based windows. The aqueous pockets allow for up to two minutes of continuous imaging of soft material samples exposed to a 200 kilo Volt imaging electron beam. During this time, soft material samples can freely rotate.

After demonstrating that their graphene liquid cell can seal an aqueous sample solution against a TEM high vacuum, the Berkeley researchers used it to study the types of gold-dsDNA nanoconjugates that have been widely used as dynamic plasmonic probes.

"The presence of double-stranded DNA molecules incorporates the major challenges of studying the dynamics of biological samples with liquid phase TEM," says Alivisatos. "The high-contrast gold nanocrystals facilitate tracking of our specimens."

The Alivisatos and Zettl groups were able to observe dimers, pairs of gold nanoparticles, tethered by a single piece of dsDNA, and trimers, three gold nanoparticles, connected into a linear configuration by two single pieces of dsDNA. From a series of 2D projected TEM images captured while the samples were rotating, the researchers were to reconstruct 3D configuration and motions of the samples as they evolved over time.

"This information would be inaccessible with conventional TEM techniques," Chen says.


Story Source:

The above story is based on materials provided by DOE/Lawrence Berkeley National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Qian Chen, Jessica M. Smith, Jungwon Park, Kwanpyo Kim, Davy Ho, Haider I. Rasool, Alex Zettl, A. Paul Alivisatos. 3D Motion of DNA-Au Nanoconjugates in Graphene Liquid Cell Electron Microscopy. Nano Letters, 2013; 13 (9): 4556 DOI: 10.1021/nl402694n

Cite This Page:

DOE/Lawrence Berkeley National Laboratory. "3-D dynamic imaging of soft materials." ScienceDaily. ScienceDaily, 3 October 2013. <www.sciencedaily.com/releases/2013/10/131003132235.htm>.
DOE/Lawrence Berkeley National Laboratory. (2013, October 3). 3-D dynamic imaging of soft materials. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2013/10/131003132235.htm
DOE/Lawrence Berkeley National Laboratory. "3-D dynamic imaging of soft materials." ScienceDaily. www.sciencedaily.com/releases/2013/10/131003132235.htm (accessed July 23, 2014).

Share This




More Matter & Energy News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com
Boeing Ups Outlook on 52% Profit Jump

Boeing Ups Outlook on 52% Profit Jump

Reuters - Business Video Online (July 23, 2014) Commercial aircraft deliveries rose seven percent at Boeing, prompting the aerospace company to boost full-year profit guidance- though quarterly revenues missed analyst estimates. Bobbi Rebell reports. Video provided by Reuters
Powered by NewsLook.com
Europe's Car Market on the Rebound?

Europe's Car Market on the Rebound?

Reuters - Business Video Online (July 23, 2014) Daimler kicks off a round of second-quarter earnings results from Europe's top carmakers with a healthy set of numbers - prompting hopes that stronger sales in Europe will counter weakness in emerging markets. Hayley Platt reports. Video provided by Reuters
Powered by NewsLook.com
9/11 Commission Members Warn of Terror "fatigue" Among American Public

9/11 Commission Members Warn of Terror "fatigue" Among American Public

Reuters - US Online Video (July 22, 2014) Ten years after releasing its initial report, members of the 9/11 Commission warn of the "waning sense of urgency" in combating terrorists attacks. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins