Featured Research

from universities, journals, and other organizations

A strange lonely planet found without a star

Date:
October 9, 2013
Source:
Institute for Astronomy at the University of Hawaii at Manoa
Summary:
An international team of astronomers has discovered an exotic young planet that is not orbiting a star. This free-floating planet, dubbed PSO J318.5-22, is just 80 light-years away from Earth and has a mass only six times that of Jupiter. The planet formed a mere 12 million years ago -- a newborn in planet lifetimes.

Artist's conception of PSO J318.5-22.
Credit: MPIA/V. Ch. Quetz

An international team of astronomers has discovered an exotic young planet that is not orbiting a star. This free-floating planet, dubbed PSO J318.5-22, is just 80 light-years away from Earth and has a mass only six times that of Jupiter. The planet formed a mere 12 million years ago -- a newborn in planet lifetimes.

It was identified from its faint and unique heat signature by the Pan-STARRS 1 (PS1) wide-field survey telescope on Haleakala, Maui. Follow-up observations using other telescopes in Hawaii show that it has properties similar to those of gas-giant planets found orbiting around young stars. And yet PSO J318.5-22 is all by itself, without a host star.

"We have never before seen an object free-floating in space that that looks like this. It has all the characteristics of young planets found around other stars, but it is drifting out there all alone," explained team leader Dr. Michael Liu of the Institute for Astronomy at the University of Hawaii at Manoa. "I had often wondered if such solitary objects exist, and now we know they do."

During the past decade, extrasolar planets have been discovered at an incredible pace, with about a thousand found by indirect methods such as wobbling or dimming of their host stars induced by the planet. However, only a handful of planets have been directly imaged, all of which are around young stars (less than 200 million years old). PSO J318.5-22 is one of the lowest-mass free-floating objects known, perhaps the very lowest. But its most unique aspect is its similar mass, color, and energy output to directly imaged planets.

"Planets found by direct imaging are incredibly hard to study, since they are right next to their much brighter host stars. PSO J318.5-22 is not orbiting a star so it will be much easier for us to study. It is going to provide a wonderful view into the inner workings of gas-giant planets like Jupiter shortly after their birth," said Dr. Niall Deacon of the Max Planck Institute for Astronomy in Germany and a co-author of the study.

PSO J318.5-22 was discovered during a search for the failed stars known as brown dwarfs. Due to their relatively cool temperatures, brown dwarfs are very faint and have very red colors. To circumvent these difficulties, Liu and his colleagues have been mining the data from the PS1 telescope. PS1 is scanning the sky every night with a camera sensitive enough to detect the faint heat signatures of brown dwarfs. PSO J318.5-22 stood out as an oddball, redder than even the reddest known brown dwarfs.

"We often describe looking for rare celestial objects as akin to searching for a needle in a haystack. So we decided to search the biggest haystack that exists in astronomy, the dataset from PS1," said Dr. Eugene Magnier of the Institute for Astronomy at the University of Hawaii at Manoa and a co-author of the study. Dr. Magnier leads the data processing team for PS1, which produces the equivalent of 60,000 iPhone photos every night. The total dataset to date is about 4,000 Terabytes, bigger than the sum of the digital version of all the movies ever made, all books ever published, and all the music albums ever released.

The team followed up the PS1 discovery with multiple telescopes on the summit of Mauna Kea on the island of Hawaii. Infrared spectra taken with the NASA Infrared Telescope Facility and the Gemini North Telescope showed that PSO J318.5-22 was not a brown dwarf, based on signatures in its infrared light that are best explained by it being young and low-mass.

By regularly monitoring the position of PSO J318.5-22 over two years with the Canada-France-Hawaii Telescope, the team directly measured its distance from Earth. Based on this distance, about 80 light-years, and its motion through space, the team concluded that PSO J318.5-22 belongs to a collection of young stars called the Beta Pictoris moving group that formed about 12 million years ago. In fact, the eponymous star of the group, Beta Pictoris, has a young gas-giant planet in orbit around it. PSO J318.5-22 is even lower in mass than the Beta Pictoris planet and probably formed in a different fashion.

The discovery paper of PSO J318.5-22 is being published by Astrophysical Journal Letters and is available at http://arxiv.org/abs/1310.0457. The other key authors of the paper are Katelyn Allers (Bucknell University), Trent Dupuy (Harvard-Smithsonian Center for Astrophysics), and Michael Kotson and Kimberly Aller (University of Hawaii at Manoa).


Story Source:

The above story is based on materials provided by Institute for Astronomy at the University of Hawaii at Manoa. Note: Materials may be edited for content and length.


Journal Reference:

  1. Michael C. Liu, Eugene A. Magnier, Niall R. Deacon, Katelyn N. Allers, Trent J. Dupuy, Michael C. Kotson, Kimberly M. Aller, W. S. Burgett, K. C. Chambers, P. W. Draper, K. W. Hodapp, R. Jedicke, R.-P. Kudritzki, N. Metcalfe, J. S. Morgan, N. Kaiser, P. A. Price, J. L. Tonry, R. J. Wainscoat. The Extremely Red, Young L Dwarf PSO J318-22: A Free-Floating Planetary-Mass Analog to Directly Imaged Young Gas-Giant Planets. Astrophysical Journal Letters, 2013; (in press)

Cite This Page:

Institute for Astronomy at the University of Hawaii at Manoa. "A strange lonely planet found without a star." ScienceDaily. ScienceDaily, 9 October 2013. <www.sciencedaily.com/releases/2013/10/131009153455.htm>.
Institute for Astronomy at the University of Hawaii at Manoa. (2013, October 9). A strange lonely planet found without a star. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2013/10/131009153455.htm
Institute for Astronomy at the University of Hawaii at Manoa. "A strange lonely planet found without a star." ScienceDaily. www.sciencedaily.com/releases/2013/10/131009153455.htm (accessed April 24, 2014).

Share This



More Space & Time News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Risk of Asteroid Hitting Earth Higher Than Thought, Study Shows

Risk of Asteroid Hitting Earth Higher Than Thought, Study Shows

Reuters - US Online Video (Apr. 23, 2014) A group of space explorers say the chance of a city-obliterating asteroid striking Earth is higher than scientists previously believed. Deborah Gembara reports. Video provided by Reuters
Powered by NewsLook.com
Nuclear-Level Asteroids Might Be More Common Than We Realize

Nuclear-Level Asteroids Might Be More Common Than We Realize

Newsy (Apr. 23, 2014) The B612 Foundation says asteroids strike Earth much more often than previously thought, and are hoping to build an early warning system. Video provided by Newsy
Powered by NewsLook.com
Two US Astronauts Step out on Spacewalk for ISS Repairs

Two US Astronauts Step out on Spacewalk for ISS Repairs

AFP (Apr. 23, 2014) Two US astronauts stepped out on a brief spacewalk Wednesday to install a backup computer at the International Space Station after one failed earlier this month. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
NASA Chief Outlines Plan for Human Mission to Mars

NASA Chief Outlines Plan for Human Mission to Mars

AFP (Apr. 22, 2014) NASA administrator Charles Bolden, speaking at the 'Human to Mars Summit' in Washington, says that learning more about the Red Planet can help answer the 'fundamental question' of 'life beyond Earth'. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


Blurring the Lines Between Stars and Planets: Lonely Planets Offer Clues to Star Formation

Oct. 9, 2013 Astronomers have captured an image of an unusual free-floating planet. As the object has no host star, it can be observed and examined much easier than planets orbiting stars, promising insight into ... read more
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins