Featured Research

from universities, journals, and other organizations

Stepping out in style: Toward an artificial leg with a natural gait

Date:
October 14, 2013
Source:
Michigan Technological University
Summary:
Humans rarely walk the straight and narrow; something's always in the way. So scientists are developing a computer-controlled artificial limb that can turn like a flesh-and-blood foot.

Assistant Professor Mo Rastgaar, left, and PhD student Evandro Ficanha with their new computer-controlled foot. The ankle can mimic a natural walk, allowing the foot to walk on the circular treadmill, shown.
Credit: Emil Groth/Michigan Technological University

Walking is tricky business, as any toddler knows. And while most artificial feet and limbs do a pretty good job restoring mobility to people who have lost a leg, they have a ways to go before they equal the intricacy of a natural gait. As a result, over half of all amputees take a fall every year, compared to about one-third of people over 65.

In cooperation with a Mayo Clinic scientist, researchers at Michigan Technological University are taking a giant step toward solving the problem. They are making a bionic foot that could make an amputee's walk in the park feel, well, like a walk in the park.

The secret lies in the ankle. Mo Rastgaar, an assistant professor of mechanical engineering-engineering mechanics, and PhD student Evandro Ficanha are working on a microprocessor-controlled ankle-foot prosthesis that comes close to achieving the innate range of motion of this highly complex joint.

These computerized artificial legs have pressure-sensitive sensors on the bottom of the foot that detect how the amputee is walking. The sensors instantaneously send signals to a microprocessor, which in turn adjusts the prosthesis to make walking more natural.

The microprocessor-controlled prostheses on the market can move an artificial foot in only one direction, toe up and toe down, which is fine if you are marking time on a treadmill, said Rastgaar. "But in reality, we never walk in a straight line for any length of time," he said. "When you walk and reach an obstacle, you have to turn, and there's always something in our way."

So, Rastgaar and Ficanha designed an ankle-foot that can move on two axes, incorporating a side-to-side roll as well as raising the toe up and down. And they moved the power and control mechanism up and away from the leg using a cable-driven mechanism. That lightens the prosthesis, making it much more comfortable and easy to use.

The cable that moves the prosthetic ankle-foot is similar to those used in bicycle brakes. It runs from the control box to the ankle mechanism and can turn the foot in almost any direction.

As part of their study, the team designed and built a large circular treadmill on which the robotic foot "walks" in circles. In tests, the prosthetic was able to copy the angles of a human ankle walking in a straight line and turning.

Kenton R. Kaufman, co-director of the Biomechanics/Motion Analysis Laboratory at the Mayo Clinic in Rochester, Minn., is collaborating in the effort to refine the prosthesis and make it available to amputees, especially wounded warriors.

"Artificial limbs tend to evolve from wars, because of the increased awareness of the problems faced by amputees," said Kaufman. A primary focus is improving safety. "Amputees have lots of problems with falling; 64 percent of above-the-knee amputees fall every year, compared to 33 percent of older adults," he said.

The latest generation of microprocessor-controlled prosthetics is a step in the right direction. "They provide active control of the joint and improve safety and function," Kaufman said. "But the advantage of Mo's foot is that it is biomimetic -- it mimics biology -- so it allows a more natural walking pattern to occur, which should result in a better gait and fewer falls."

A YouTube video of the foot in action is available here.

The researchers expect to begin refining their design at the Mayo Clinic in summer 2014. They will present a paper on their work, "Ankle Angles during Step Turn and Straight Walk: Implications for the Design of a Steerable Ankle-Foot Prosthetic Robot," at the 2013 ASME Dynamic Systems and Control Conference, to be held Oct. 21-23 at Stanford University.


Story Source:

The above story is based on materials provided by Michigan Technological University. The original article was written by Marcia Goodrich. Note: Materials may be edited for content and length.


Cite This Page:

Michigan Technological University. "Stepping out in style: Toward an artificial leg with a natural gait." ScienceDaily. ScienceDaily, 14 October 2013. <www.sciencedaily.com/releases/2013/10/131014155704.htm>.
Michigan Technological University. (2013, October 14). Stepping out in style: Toward an artificial leg with a natural gait. ScienceDaily. Retrieved April 16, 2014 from www.sciencedaily.com/releases/2013/10/131014155704.htm
Michigan Technological University. "Stepping out in style: Toward an artificial leg with a natural gait." ScienceDaily. www.sciencedaily.com/releases/2013/10/131014155704.htm (accessed April 16, 2014).

Share This



More Computers & Math News

Wednesday, April 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Twitter, Apple Social Data Purchases Likely to Spur More Mergers and Acquisitions

Twitter, Apple Social Data Purchases Likely to Spur More Mergers and Acquisitions

TheStreet (Apr. 16, 2014) The social media data space is likely to see more mergers and acquisitions following Twitter Inc.'s acquisition of tweet analyzer Gnip Inc. on Tuesday and Apples Inc.'s purchase of Topsy Labs Inc. back in December. One firm in particular, the U.K.'s DataSift Inc., could be on the list of potential buyers. Among other social media startups that could be ripe for picking is Banjo, whose mobile app provides aggregated content by topic and location. Banjo could also be a good fit for Twitter. Video provided by TheStreet
Powered by NewsLook.com
Bitcoin Exchange Mt. Gox to Liquidate After Rebuilding Rejected

Bitcoin Exchange Mt. Gox to Liquidate After Rebuilding Rejected

TheStreet (Apr. 16, 2014) Bitcoin exchange Mt. Gox has agreed to liquidate after a Japanese court rejected its plans to rebuild, according to a report by the Wall Street Journal. Mt. Gox filed for bankruptcy protection in February after announcing about 850,000 bitcoins, worth around $454 million at today's rates, may have been stolen by hackers. It has since recovered 200,000 of the missing bitcoins. The court put Mt. Gox's assets under a provisional administrator's control until bankruptcy proceedings begin. Video provided by TheStreet
Powered by NewsLook.com
BlackBerry: The Crash That Launched 1,000 Startups

BlackBerry: The Crash That Launched 1,000 Startups

Reuters - Business Video Online (Apr. 16, 2014) Tech startups in BlackBerry's hometown of Waterloo, Ontario, are tapping talent from the struggling smartphone company and filling the void left in the region by its meltdown. Reuters correspondent Euan Rocha visits the region that could become Canada's Silicon Valley. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins