Featured Research

from universities, journals, and other organizations

New discovery in quest for better drugs

Date:
October 15, 2013
Source:
Monash University
Summary:
Scientists have combined cutting edge computer modelling with pharmacology and medicinal chemistry to reveal new insights into how the body interacts with novel drug treatments, in research that could lead to the creation of drugs that are more targeted and with fewer side effects.

Scientists have combined cutting edge computer modelling with pharmacology and medicinal chemistry to reveal new insights into how the body interacts with novel drug treatments, in research that could lead to the creation of drugs that are more targeted and with fewer side effects.

Related Articles


In a paper published today in Nature, researchers from the Monash Institute of Pharmaceutical Sciences (MIPS) were part of an international team who investigated alternative drug recognition sites on G protein-coupled receptors (GPCRs) -- the largest and most important family of receptor proteins in the human body.

GPCRs play a role in virtually every biological process and most diseases, including neuropsychiatric disorders, cardiovascular disease, obesity and diabetes, inflammation and cancer. Almost half of all current medications available use GPCRs to achieve their therapeutic effect.

The new research into how GPCRs work at the molecular level has unlocked vital insights into how drugs interact with this therapeutically relevant receptor family.

Professor Arthur Christopoulos from MIPS said it was hoped the research would lead to the creation of drugs that are more targeted, and with fewer side effects.

"This study has cracked the secret of how a new class of drug molecule, which we have been studying for some time now, actually binds to a GPCR and changes the protein's structure to achieve its unique molecular effect," Professor Christopoulos said.

"This research can explain the behaviour of such drugs at the molecular level and facilitate structure-based design for new and more potent drugs."

By starting with a known crystal structure of a GPCR as a template, the team used computer simulations to map how different drugs and the receptor can "find" each other, and how they change their shape and orientation as they interact. Importantly, the predictions made by the computer simulations were validated by new biological experiments and by the rational design of a more potent molecule that targets the GPCR.


Story Source:

The above story is based on materials provided by Monash University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ron O. Dror, Hillary F. Green, Celine Valant, David W. Borhani, James R. Valcourt, Albert C. Pan, Daniel H. Arlow, Meritxell Canals, J. Robert Lane, Raphaλl Rahmani, Jonathan B. Baell, Patrick M. Sexton, Arthur Christopoulos, David E. Shaw. Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs. Nature, 2013; DOI: 10.1038/nature12595

Cite This Page:

Monash University. "New discovery in quest for better drugs." ScienceDaily. ScienceDaily, 15 October 2013. <www.sciencedaily.com/releases/2013/10/131015094657.htm>.
Monash University. (2013, October 15). New discovery in quest for better drugs. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2013/10/131015094657.htm
Monash University. "New discovery in quest for better drugs." ScienceDaily. www.sciencedaily.com/releases/2013/10/131015094657.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rural India's Low-Cost Sanitary Pad Revolution

Rural India's Low-Cost Sanitary Pad Revolution

AFP (Nov. 28, 2014) — One man hopes his invention -– a machine that produces cheap sanitary pads –- will help empower Indian women. Duration: 01:51 Video provided by AFP
Powered by NewsLook.com
Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) — In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
WHO Says Male Ebola Survivors Should Abstain From Sex

WHO Says Male Ebola Survivors Should Abstain From Sex

Newsy (Nov. 28, 2014) — WHO cites four studies that say Ebola can still be detected in semen up to 82 days after the onset of symptoms. Video provided by Newsy
Powered by NewsLook.com
Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins