Featured Research

from universities, journals, and other organizations

New discovery in quest for better drugs

Date:
October 15, 2013
Source:
Monash University
Summary:
Scientists have combined cutting edge computer modelling with pharmacology and medicinal chemistry to reveal new insights into how the body interacts with novel drug treatments, in research that could lead to the creation of drugs that are more targeted and with fewer side effects.

Scientists have combined cutting edge computer modelling with pharmacology and medicinal chemistry to reveal new insights into how the body interacts with novel drug treatments, in research that could lead to the creation of drugs that are more targeted and with fewer side effects.

In a paper published today in Nature, researchers from the Monash Institute of Pharmaceutical Sciences (MIPS) were part of an international team who investigated alternative drug recognition sites on G protein-coupled receptors (GPCRs) -- the largest and most important family of receptor proteins in the human body.

GPCRs play a role in virtually every biological process and most diseases, including neuropsychiatric disorders, cardiovascular disease, obesity and diabetes, inflammation and cancer. Almost half of all current medications available use GPCRs to achieve their therapeutic effect.

The new research into how GPCRs work at the molecular level has unlocked vital insights into how drugs interact with this therapeutically relevant receptor family.

Professor Arthur Christopoulos from MIPS said it was hoped the research would lead to the creation of drugs that are more targeted, and with fewer side effects.

"This study has cracked the secret of how a new class of drug molecule, which we have been studying for some time now, actually binds to a GPCR and changes the protein's structure to achieve its unique molecular effect," Professor Christopoulos said.

"This research can explain the behaviour of such drugs at the molecular level and facilitate structure-based design for new and more potent drugs."

By starting with a known crystal structure of a GPCR as a template, the team used computer simulations to map how different drugs and the receptor can "find" each other, and how they change their shape and orientation as they interact. Importantly, the predictions made by the computer simulations were validated by new biological experiments and by the rational design of a more potent molecule that targets the GPCR.


Story Source:

The above story is based on materials provided by Monash University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ron O. Dror, Hillary F. Green, Celine Valant, David W. Borhani, James R. Valcourt, Albert C. Pan, Daniel H. Arlow, Meritxell Canals, J. Robert Lane, Raphaλl Rahmani, Jonathan B. Baell, Patrick M. Sexton, Arthur Christopoulos, David E. Shaw. Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs. Nature, 2013; DOI: 10.1038/nature12595

Cite This Page:

Monash University. "New discovery in quest for better drugs." ScienceDaily. ScienceDaily, 15 October 2013. <www.sciencedaily.com/releases/2013/10/131015094657.htm>.
Monash University. (2013, October 15). New discovery in quest for better drugs. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2013/10/131015094657.htm
Monash University. "New discovery in quest for better drugs." ScienceDaily. www.sciencedaily.com/releases/2013/10/131015094657.htm (accessed September 30, 2014).

Share This



More Health & Medicine News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How 'Yes Means Yes' Defines Sexual Assault

How 'Yes Means Yes' Defines Sexual Assault

Newsy (Sep. 29, 2014) — Aimed at reducing sexual assaults on college campuses, California has adopted a new law changing the standard of consent for sexual activity. Video provided by Newsy
Powered by NewsLook.com
Scientists May Have Found An Early Sign Of Pancreatic Cancer

Scientists May Have Found An Early Sign Of Pancreatic Cancer

Newsy (Sep. 29, 2014) — Researchers looked at 1,500 blood samples and determined people who developed pancreatic cancer had more branched chain amino acids. Video provided by Newsy
Powered by NewsLook.com
Colo. Doctors See Cluster of Enterovirus Cases

Colo. Doctors See Cluster of Enterovirus Cases

AP (Sep. 29, 2014) — Doctors at the Children's Hospital of Colorado say they have treated over 4,000 children with serious respiratory illnesses since August. Nine of the patients have shown distinct neurological symptoms, including limb weakness. (Sept. 29) Video provided by AP
Powered by NewsLook.com
Dr.'s Unsure of Cause of Fast-Spreading Virus

Dr.'s Unsure of Cause of Fast-Spreading Virus

AP (Sep. 29, 2014) — Doctors at the Children's Hospital of Colorado say they have treated over 4,000 children with serious respiratory illnesses since August. Nine of the patients have shown distinct neurological symptoms, including limb weakness. (Sept. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins