Featured Research

from universities, journals, and other organizations

Newly discovered mechanism propels micromotors

Date:
October 15, 2013
Source:
American Institute of Physics (AIP)
Summary:
Scientists studying the behavior of platinum particles immersed in hydrogen peroxide may have discovered a new way to propel microscopic machines.

This image shows a possible application of chemical micromotors.
Credit: Daigo Yamamoto/Doshisha

Scientists studying the behavior of platinum particles immersed in hydrogen peroxide may have discovered a new way to propel microscopic machines. The new mechanism is described in The Journal of Chemical Physics, which is produced by AIP Publishing.

Related Articles


Micro-sized machines operate under very different conditions than their macro-sized counterparts. The high surface-area-to-mass ratio of tiny motors means they require a constant driving force to keep them going. In the past, researchers have relied on asymmetric chemical reactions on the surface of the motors to supply the force. For example, Janus motors, are spherical particles coated with a different material on each side. One of the sides is typically made of a catalyst like platinum, which speeds up the reaction that converts hydrogen peroxide into water and oxygen. When the Janus motor is immersed in hydrogen peroxide, oxygen bubbles form more quickly on the platinum side, pushing the sphere forward.

Researchers from Doshisha University in Kyoto, Japan have now discovered, however, that two-sided materials aren't necessary to make micromotors move. The researchers placed tiny spheres made only of platinum in hydrogen peroxide and observed the particles' movement through a microscope. Although the individual spheres bounced about randomly, the researchers noticed that clumps of particles began to exhibit regular motions. The clumps shaped like teardrops moved forward, those that resembled windmills started to spin, and the boomerang shaped clumps traveled in a circle. After creating a theoretical model of the forces at work, the researchers realized they could explain the regular motions by the asymmetrical drag generated by the different shapes.

The researchers envision combining their new type of motors with existing motors to create easily controllable machines with a versatile range of motions.

Micro- and nano-sized machines may one day ferry drugs around the body or help control chemical reactions, but the Japanese team also sees a more fundamental reason to study such tiny systems.

"Micromotors may be used not only as a power source for micromachines and microfactories, but may also give us significant insight regarding mysterious living phenomenon," said Daigo Yamamoto, a researcher in the Molecular Chemical Engineering Laboratory at Doshisha University and an author on the paper that describes the new motors.


Story Source:

The above story is based on materials provided by American Institute of Physics (AIP). Note: Materials may be edited for content and length.


Journal Reference:

  1. Daigo Yamamoto, Atsushi Mukai, Naoaki Okita, Kenichi Yoshikawa, Akihisa Shioi. Catalytic micromotor generating self-propelled regular motion through random fluctuation. The Journal of Chemical Physics, 2013; 139 (3): 034705 DOI: 10.1063/1.4813791

Cite This Page:

American Institute of Physics (AIP). "Newly discovered mechanism propels micromotors." ScienceDaily. ScienceDaily, 15 October 2013. <www.sciencedaily.com/releases/2013/10/131015103650.htm>.
American Institute of Physics (AIP). (2013, October 15). Newly discovered mechanism propels micromotors. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2013/10/131015103650.htm
American Institute of Physics (AIP). "Newly discovered mechanism propels micromotors." ScienceDaily. www.sciencedaily.com/releases/2013/10/131015103650.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Car Park Solution for Flexible Green Energy

Car Park Solution for Flexible Green Energy

Reuters - Innovations Video Online (Nov. 24, 2014) A British solar power start-up says that by covering millions of existing car park spaces around the UK with flexible solar panels, the country's power problems could be solved. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Newsy (Nov. 23, 2014) Microsoft has robotic security guards working at its Silicon Valley Campus. Video provided by Newsy
Powered by NewsLook.com
US Army Completes Ebola Treatment Unit

US Army Completes Ebola Treatment Unit

Reuters - US Online Video (Nov. 22, 2014) The US Army of engineers completes Ebola treatment center in Liberia. Julie Noce reports. Video provided by Reuters
Powered by NewsLook.com
Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins