Featured Research

from universities, journals, and other organizations

A giant misalignment in a multiple planet system

Date:
October 21, 2013
Source:
NASA
Summary:
A long-standing puzzle in the study of exoplanets is the formation of hot Jupiters, gas giant planets that snuggly orbit their host star. To explain their short orbital periods, theory suggests that hot Jupiters form in long orbits and then quiescently migrate through the protoplanetary disc, the flat ring of dust and debris that circles a newly fashioned star and coalesces to form the planets. This theory was challenged when the orbital plane of hot Jupiters were discovered to be frequently misaligned with the equator of their host stars.

Graphical sketch of the Kepler-56 system. The line of sight from Earth is illustrated by the dashed line, and dotted lines show the orbits of three detected companions in the system. The solid arrow marks the rotation axis of the host star, and the thin solid line marks the host star equator.
Credit: NASA GSFC/Ames/D Huber

A long-standing puzzle in the study of exoplanets is the formation of hot Jupiters, gas giant planets that snuggly orbit their host star. To explain their short orbital periods, theory suggests that hot Jupiters form in long orbits and then quiescently migrate through the protoplanetary disc, the flat ring of dust and debris that circles a newly fashioned star and coalesces to form the planets.

This theory was challenged when the orbital plane of hot Jupiters were discovered to be frequently misaligned with the equator of their host stars. Scientists interpreted this as evidence that hot Jupiters are the result of chaotic close encounters with other planets.

A decisive test between the two theories are systems with more than one planet: if misalignments are indeed caused by dynamical perturbations which lead to the creation of hot Jupiters, then multi-planet systems without hot Jupiters should be preferentially aligned. What new research reveals is quite different.

Using data from the NASA's Kepler space telescope, an international research team led by Daniel Huber, a NASA Postdoctoral Program fellow at NASA's Ames Research Center in Moffett Field, Calif., studied Kepler-56, a red giant star four times larger than the sun located at a distance of approximately 3,000 light years from Earth. By analyzing the fluctuations in brightness at different points on the surface of Kepler-56, Huber and his collaborators discovered that the star's rotation axis is tilted by about 45 degrees to our line of sight.

"This was a surprise because we already knew about the existence of two planets transiting in front of Kepler-56. This suggested that the host star must be misaligned with the orbits of both planets," explains Huber. "What we found is quite literally a giant misalignment in an exoplanet system."

The culprit for the misalignment is suspected to be a third, massive companion in a long period orbit, revealed by observations obtained with the Keck telescope on Mauna Kea, Hawaii.

"Computer calculations show the outer companion may have torqued the orbital planes of the transiting planets in concert, leaving them co-planar but periodically misaligning them with the equator of the host star," said Daniel Fabrycky, co-author and professor of astronomy at the University of Chicago.

Nearly 20 years after the discovery of the first hot Jupiter, the giant misalignment in the Kepler-56 system marks an important step towards a unified explanation for the formation of hot Jupiters.

"We now know that misalignments are not just confined to hot Jupiter systems," said Huber. "Further observations will reveal whether the tilting mechanism in Kepler-56 could also be responsible for misalignments observed in hot Jupiter systems."

The results are published in the Oct. 18 issue of the journal Science.


Story Source:

The above story is based on materials provided by NASA. Note: Materials may be edited for content and length.


Journal Reference:

  1. D. Huber, J. A. Carter, M. Barbieri, A. Miglio, K. M. Deck, D. C. Fabrycky, B. T. Montet, L. A. Buchhave, W. J. Chaplin, S. Hekker, J. Montalban, R. Sanchis-Ojeda, S. Basu, T. R. Bedding, T. L. Campante, J. Christensen-Dalsgaard, Y. P. Elsworth, D. Stello, T. Arentoft, E. B. Ford, R. L. Gilliland, R. Handberg, A. W. Howard, H. Isaacson, J. A. Johnson, C. Karoff, S. D. Kawaler, H. Kjeldsen, D. W. Latham, M. N. Lund, M. Lundkvist, G. W. Marcy, T. S. Metcalfe, V. Silva Aguirre, J. N. Winn. Stellar Spin-Orbit Misalignment in a Multiplanet System. Science, 2013; 342 (6156): 331 DOI: 10.1126/science.1242066

Cite This Page:

NASA. "A giant misalignment in a multiple planet system." ScienceDaily. ScienceDaily, 21 October 2013. <www.sciencedaily.com/releases/2013/10/131021103455.htm>.
NASA. (2013, October 21). A giant misalignment in a multiple planet system. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2013/10/131021103455.htm
NASA. "A giant misalignment in a multiple planet system." ScienceDaily. www.sciencedaily.com/releases/2013/10/131021103455.htm (accessed September 22, 2014).

Share This



More Space & Time News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's MAVEN Spacecraft Has Finally Reached Mars

NASA's MAVEN Spacecraft Has Finally Reached Mars

Newsy (Sep. 22, 2014) After a 10-month voyage through space, NASA's MAVEN spacecraft is now orbiting the Red Planet. Video provided by Newsy
Powered by NewsLook.com
Raw: SpaceX Rocket Carries 3-D Printer to Space

Raw: SpaceX Rocket Carries 3-D Printer to Space

AP (Sep. 22, 2014) A SpaceX Rocket launched from Cape Canaveral, carrying a custom-built 3-D printer into space. NASA envisions astronauts one day using the printer to make their own spare parts. (Sept. 22) Video provided by AP
Powered by NewsLook.com
SpaceX Cargo Ship Blasts Off Toward Space Station

SpaceX Cargo Ship Blasts Off Toward Space Station

AFP (Sep. 21, 2014) SpaceX's unmanned Dragon cargo ship blasts off toward the International Space Station, carrying a load of supplies and science experiments for the astronauts living there. Duration: 00:35 Video provided by AFP
Powered by NewsLook.com
NASA's MAVEN To Study Martian Atmosphere

NASA's MAVEN To Study Martian Atmosphere

Newsy (Sep. 21, 2014) NASA's Maven will soon give information that could explain what happened to Mars' atmosphere. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


Astronomer Helps Research Team See Misaligned Planets in Distant System

Oct. 17, 2013 NASA's Kepler space telescope has helped astronomers see a distant planetary system featuring multiple planets orbiting their host star at a severe ... read more
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins