Featured Research

from universities, journals, and other organizations

Drug developed based on zebrafish studies passes Phase I clinical trial

Date:
October 21, 2013
Source:
Boston Children's Hospital
Summary:
Zebrafish research achieved a significant milestone when the first drug developed through studies utilizing the tiny animal and then put into clinical trials passed a Phase 1 trial aimed at establishing its safety. The drug has already advanced to Phase II studies designed to determine its efficacy.

Zebrafish research achieved a significant milestone when the first drug developed through studies utilizing the tiny animal and then put into clinical trials passed a Phase 1 trial aimed at establishing its safety. The drug, discovered in the laboratory of Leonard Zon, MD, at Boston Children's Hospital, has already advanced to Phase II studies designed to determine its efficacy.

Results of the safety trial were reported recently in the journal Blood. At only six years after Zon's laboratory reported the discovery of the chemical from which the drug is derived, the Phase 1 data underscore the potential of zebrafish research to accelerate the journey from bench to bedside.

"The zebrafish is a very good system for evaluating potential drugs," Zon said. "When you discover a new treatment option and can see it go into patients, it's quite a remarkable feeling."

The drug, which is being developed by Fate Therapeutics under the name ProHema®, is the result of the Zon laboratory's search for a way to improve the success of hematopoietic stem cell (HSC) transplants using umbilical cord blood. ProHema is a chemical derivative of prostaglandin E2 (PGE2) that, according to preclinical and clinical data, might improve engraftment of transplanted umbilical cord blood cells by helping donated cells home in on the bone marrow.

Although umbilical cords are an effective transplant source in patients for whom a suitable donor cannot be found, a single umbilical cord rarely contains enough HSCs for a transplant for an adult patient. The current method is to use two cord blood units per transplant, raising the risk that the immune cells that arise from the two cords may start to attack each other. In addition, umbilical cords are expensive and in limited supply.

This problem has led Zon, a co-author of the Blood study, and other researchers to search for molecules that could help expand cord blood stem cells or improve the efficiency of cord blood transplants and eliminate the need for cells from a second cord.

Zon's laboratory discovered PGE2's properties after screening 2,500 chemicals for their effects on blood stem cell production in zebrafish, a popular and cost-effective research model for stem cell, genetic and developmental research. Not only are zebrafish genes surprisingly similar to human genes, but they can be inexpensively housed at high densities and female zebrafish lay 300 eggs per week, making them a promising vehicle for quickly and cheaply discovering new drugs.

Zon and his colleagues reported their initial PGE2 findings in Nature in 2007.

"We think PGE2 acts as a kind of priming mechanism," Zon said. "It gets the cell set so that it will function better once it is introduced into the recipient's body." Subsequent preclinical studies showed that PGE2 can trigger a four-fold increase in efficiency of stem cell engraftment, compared to untreated controls, by helping stem cells home more effectively to the bone marrow.

The Phase I trial of ProHema, the drug derived from PGE2, was launched in 2009 at Dana-Farber Cancer Institute (DFCI) and Massachusetts General Hospital under the direction of DFCI's Corey Cutler, MD, MPH. It showed that treatment of donated umbilical cord blood stem cells with the drug before transplant was safe. In addition, treated cells could engraft and rebuild a patient's blood system more quickly than untreated ones.

"These are very promising results," Cutler said. "They suggest that by generating more effective stem cells, we might be able to lower the dose of stem cells needed for a successful transplant. And because this approach takes substantially less time than techniques that increase the number of stem cells prior to transplant, it can easily be performed by most stem cell-processing facilities."

Because the Food and Drug Administration has already approved PGE2 for other uses, researchers were able to move quickly into clinical trials. The Phase II study is underway at seven institutions nationwide.


Story Source:

The above story is based on materials provided by Boston Children's Hospital. Note: Materials may be edited for content and length.


Journal Reference:

  1. D. L. Stachura, O. Svoboda, C. A. Campbell, R. Espin-Palazon, R. P. Lau, L. I. Zon, P. Bartunek, D. Traver. The zebrafish granulocyte colony stimulating factors (Gcsfs): two paralogous cytokines and their roles in hematopoietic development and maintenance. Blood, 2013; DOI: 10.1182/blood-2012-12-475392

Cite This Page:

Boston Children's Hospital. "Drug developed based on zebrafish studies passes Phase I clinical trial." ScienceDaily. ScienceDaily, 21 October 2013. <www.sciencedaily.com/releases/2013/10/131021131011.htm>.
Boston Children's Hospital. (2013, October 21). Drug developed based on zebrafish studies passes Phase I clinical trial. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2013/10/131021131011.htm
Boston Children's Hospital. "Drug developed based on zebrafish studies passes Phase I clinical trial." ScienceDaily. www.sciencedaily.com/releases/2013/10/131021131011.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) — Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) — The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) — Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) — New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins