Featured Research

from universities, journals, and other organizations

4-D printing technology for composite materials developed

Date:
October 22, 2013
Source:
University of Colorado at Boulder
Summary:
Researchers have successfully added a fourth dimension to their printing technology, opening up exciting possibilities for the creation and use of adaptive, composite materials in manufacturing, packaging and biomedical applications.

Researchers at the University of Colorado Boulder have successfully added a fourth dimension to their printing technology, opening up exciting possibilities for the creation and use of adaptive, composite materials in manufacturing, packaging and biomedical applications.

Related Articles


A team led by H. Jerry Qi, associate professor of mechanical engineering at CU-Boulder, and his collaborator Martin L. Dunn of the Singapore University of Technology and Design has developed and tested a method for 4D printing. The researchers incorporated "shape memory" polymer fibers into the composite materials used in traditional 3D printing, which results in the production of an object fixed in one shape that can later be changed to take on a new shape.

"In this work, the initial configuration is created by 3D printing, and then the programmed action of the shape memory fibers creates time dependence of the configuration -- the 4D aspect," said Dunn, a former CU-Boulder mechanical engineering faculty member who has studied the mechanics and physics of composite materials for more two decades.

The 4D printing concept, which allows materials to "self-assemble" into 3D structures, was initially proposed by Massachusetts Institute of Technology faculty member Skylar Tibbits in April of this year. Tibbits and his team combined a strand of plastic with a layer made out of "smart" material that could self-assemble in water.

"We advanced this concept by creating composite materials that can morph into several different, complicated shapes based on a different physical mechanism," said Dunn. "The secret of using shape memory polymer fibers to generate desired shape changes of the composite material is how the architecture of the fibers is designed, including their location, orientation and other factors."

The CU-Boulder team's findings were published last month in the journal Applied Physics Letters. The paper was co-authored by Qi "Kevin" Ge, who joined MIT as a postdoctoral research associate in September.

"The fascinating thing is that these shapes are defined during the design stage, which was not achievable a few years ago," said Qi.

The CU-Boulder team demonstrated that the orientation and location of the fibers within the composite determines the degree of shape memory effects like folding, curling, stretching or twisting. The researchers also showed the ability to control those effects by heating or cooling the composite material.

Qi says 3D printing technology, which has existed for about three decades, has only recently advanced to the point that active fibers can be incorporated into the composites so their behavior can be predictably controlled when the object is subjected to thermal and mechanical forces.

The technology promises exciting new possibilities for a variety of applications. Qi said that a solar panel or similar product could be produced in a flat configuration onto which functional devices can be easily installed. It could then be changed to a compact shape for packing and shipping. After arriving at its destination, the product could be activated to form a different shape that optimizes its function.

As 3D printing technology matures with more printable materials and higher resolution at larger scales, the research should help provide a new approach to creating reversible or tunable 3D surfaces and solids in engineering like the composite shells of complex shapes used in automobiles, aircraft and antennas.


Story Source:

The above story is based on materials provided by University of Colorado at Boulder. Note: Materials may be edited for content and length.


Journal Reference:

  1. Qi Ge, H. Jerry Qi, Martin L. Dunn. Active materials by four-dimension printing. Applied Physics Letters, 2013; 103 (13): 131901 DOI: 10.1063/1.4819837

Cite This Page:

University of Colorado at Boulder. "4-D printing technology for composite materials developed." ScienceDaily. ScienceDaily, 22 October 2013. <www.sciencedaily.com/releases/2013/10/131022141039.htm>.
University of Colorado at Boulder. (2013, October 22). 4-D printing technology for composite materials developed. ScienceDaily. Retrieved February 28, 2015 from www.sciencedaily.com/releases/2013/10/131022141039.htm
University of Colorado at Boulder. "4-D printing technology for composite materials developed." ScienceDaily. www.sciencedaily.com/releases/2013/10/131022141039.htm (accessed February 28, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, February 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Elon Musk's Hyperloop Moves Forward

Elon Musk's Hyperloop Moves Forward

Buzz60 (Feb. 27, 2015) Zipping around at 800-miles an hour is coming closer to reality in California. An entire town is being built around Elon Musk&apos;s Hyperloop concept and it wants you to stop in for a ride when it&apos;s ready. Brett Larson is on board. Video provided by Buzz60
Powered by NewsLook.com
Vibrating Bicycle Senses Traffic

Vibrating Bicycle Senses Traffic

Reuters - Innovations Video Online (Feb. 26, 2015) Dutch scientists have developed a smart bicycle that uses sensors, wireless technology and video to warn riders of traffic dangers. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
In Japan, Robot Dogs Are for Life -- And Death

In Japan, Robot Dogs Are for Life -- And Death

AFP (Feb. 25, 2015) Robot dogs are the perfect pet for some in Japan who go to repairmen-turned-vets when their pooch breaks down - while a full Buddhist funeral ceremony awaits those who don&apos;t make it. Duration: 02:40 Video provided by AFP
Powered by NewsLook.com
London Show Dissects History of Forensic Science

London Show Dissects History of Forensic Science

AFP (Feb. 25, 2015) Forensic science, which has fascinated generations with its unravelling of gruesome crime mysteries, is being put under the microscope in an exhibition of real criminal investigations in London. Duration: 00:53 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins