Featured Research

from universities, journals, and other organizations

A trace of memory, explored

Date:
October 23, 2013
Source:
Research Institute of Molecular Pathology
Summary:
Most of our behavior – and thus our personality – is shaped by previous experience. To store the memory of these experiences and to be able to retrieve the information at will is therefore considered one of the most basic and important functions of the brain. The current model in neuroscience poses that memory is stored as long-lasting anatomical changes in synapses, the specialized structures by which nerve cells connect and signal to each other.

Cross section of the auditory cortex of a mouse brain. A single neuron is highlighted by green fluorescent protein. Dendritic spines that are visible along the processes correspond to excitatory synapses.
Credit: Copyright: IMP

Most of our behavior -- and thus our personality -- is shaped by previous experience. To store the memory of these experiences and to be able to retrieve the information at will is therefore considered one of the most basic and important functions of the brain. The current model in neuroscience poses that memory is stored as long-lasting anatomical changes in synapses, the specialized structures by which nerve cells connect and signal to each other.

Related Articles


At the Research Institute of Molecular Pathology (IMP) in Vienna, Simon Rumpel and Kaja Moczulska used mice to study the effects of learning and memorizing on the architecture of synapses. They employed an advanced microscopic technique called in vivo two-photon imaging that allows the analysis of structures as small as a thousandth of a millimetre in the living brain.

Using this technology, the neurobiologists tracked individual neurons over the course of several weeks and analysed them repeatedly. They focussed their attention on dendritic spines that decorate the neuronal processes and correspond to excitatory synapses. The analyses were combined with behavioral experiments in which the animals underwent classic auditory conditioning. The results showed that the learning experience triggered the formation of new synaptic connections in the auditory cortex. Several of these new structures persisted over time, suggesting a long-lasting trace of memory and confirming an important prediction of the current model.

Apart from the changes during memory formation, the IMP-scientists were interested in the act of remembering. Earlier studies had shown that memory recall is associated with molecular processes similar to the initial formation of memory. These similarities have been suggested to reflect remodelling of memory traces during recall.

To test this hypothesis, previously trained mice were exposed to the auditory cue a week after conditioning while tracking dendritic spines in the auditory cortex. The results showed that although some molecular processes indeed resembled those during memory formation, the anatomical structure of the synapses did not change. These findings suggest that memory retrieval does not lead to a modification of the memory trace per se. Instead, the molecular processes triggered by memory formation and recall could reflect the stabilization of previously altered or recently retrieved synaptic connections.

The primary goal of elucidating the processes during memory formation and recall is to increase our basic knowledge. Insights gained from these studies might however help us to understand diseases of the nervous system that affect memory. They may also, in the future, provide the basis for treatments that offer relief to traumatized patients.


Story Source:

The above story is based on materials provided by Research Institute of Molecular Pathology. Note: Materials may be edited for content and length.


Journal Reference:

  1. K. E. Moczulska, J. Tinter-Thiede, M. Peter, L. Ushakova, T. Wernle, B. Bathellier, S. Rumpel. Dynamics of dendritic spines in the mouse auditory cortex during memory formation and memory recall. Proceedings of the National Academy of Sciences, 2013; DOI: 10.1073/pnas.1312508110

Cite This Page:

Research Institute of Molecular Pathology. "A trace of memory, explored." ScienceDaily. ScienceDaily, 23 October 2013. <www.sciencedaily.com/releases/2013/10/131023090538.htm>.
Research Institute of Molecular Pathology. (2013, October 23). A trace of memory, explored. ScienceDaily. Retrieved March 29, 2015 from www.sciencedaily.com/releases/2013/10/131023090538.htm
Research Institute of Molecular Pathology. "A trace of memory, explored." ScienceDaily. www.sciencedaily.com/releases/2013/10/131023090538.htm (accessed March 29, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Sunday, March 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

AAA: Distracted Driving a Serious Teen Problem

AAA: Distracted Driving a Serious Teen Problem

AP (Mar. 25, 2015) While distracted driving is not a new problem for teens, new research from the AAA Foundation for Traffic Safety says it&apos;s much more serious than previously thought. (March 25) Video provided by AP
Powered by NewsLook.com
Smartphone Use Changing Our Brain and Thumb Interaction, Say Researchers

Smartphone Use Changing Our Brain and Thumb Interaction, Say Researchers

Reuters - Innovations Video Online (Mar. 25, 2015) European researchers say our smartphone use offers scientists an ideal testing ground for human brain plasticity. Dr Ako Ghosh&apos;s team discovered that the brains and thumbs of smartphone users interact differently from those who use old-fashioned handsets. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Many Don't Know They Have Alzheimer's, But Their Doctors Do

Many Don't Know They Have Alzheimer's, But Their Doctors Do

Newsy (Mar. 24, 2015) According to a new study by the Alzheimer&apos;s Association, more than half of those who have the degenerative brain disease aren&apos;t told by their doctors. Video provided by Newsy
Powered by NewsLook.com
A Quick 45-Minute Nap Can Improve Your Memory

A Quick 45-Minute Nap Can Improve Your Memory

Newsy (Mar. 23, 2015) Researchers found those who napped for 45 minutes to an hour before being tested on information recalled it five times better than those who didn&apos;t. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins