Featured Research

from universities, journals, and other organizations

Birthing a new breed of materials

Date:
October 23, 2013
Source:
American Institute of Physics
Summary:
New research shows scientists' first steps into the unexplored territory of interfacial materials that could someday yield smaller, faster, more energy-efficient devices.

Where two different materials meet on the atomic level, a new material can be born that is neither one nor the other. The two parent materials do not mix -- they remain distinct from one another -- but their marriage begets a strange child with properties unlike those of either parent. These so-called interfacial materials are considered to be a breed of materials in their own right, and, thanks to recent technological advances that allow them to be fabricated in the laboratory, their real-world properties can now be explored.

Related Articles


A discussion of new insights into these interfacial materials, as well as some of the novel properties expected of them, will be given by materials scientist Chang-Beom Eom, Theodore H. Geballe Professor and Harvey D. Spangler Distinguished Professor at the University of Wisconsin at Madison, at the AVS 60th International Symposium and Exhibition, held Oct. 27-Nov. 1, 2013, in Long Beach, Calif.

"Each new interfacial material presents unexplored territory, in much the same way as the discovery of a new bulk material," Eom said. Researchers can use analogies to compare a new interfacial material to bulk materials with similar properties, he continued, "but there is always something unique about the new interfacial material that holds surprises" for the people studying it.

For one such material is born from the marriage between LaAlO3 (lanthanum aluminum oxide) and SrTiO3 (strontium titanium oxide). The parent compounds are insulating, meaning they do not conduct electricity; but the interface where they meet is conducting. Another interfacial material, made of different parent compounds, holds promise for being a topological insulator, a material that allows electrons to move along its surface in a way that fundamentally protects them from the usual defects and imperfections of a conducting substance.

Size is one of the bigger advantages of these new substances compared to bulk materials. Since their unusual behavior is confined to the atom-thin space between two compounds, interfacial materials could one day be used to make tiny devices that consume less power, Eom said.

Theorists had predicted the existence of many of these substances, but modern-day techniques for growing one thin film on top of another with interfaces that are atomically distinct from each other have now made it possible to create these materials in the laboratory.

"Advances over the last ten years in both materials experiment and theory have come together to provide our first real opportunities to broadly explore interfacial materials," Eom said. With a deeper understanding of their unusual properties, Eom continued, researchers may one day be able to customize the materials, combining theory and experiment to design interfacial materials for nanoscale applications.


Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.


Cite This Page:

American Institute of Physics. "Birthing a new breed of materials." ScienceDaily. ScienceDaily, 23 October 2013. <www.sciencedaily.com/releases/2013/10/131023141123.htm>.
American Institute of Physics. (2013, October 23). Birthing a new breed of materials. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2013/10/131023141123.htm
American Institute of Physics. "Birthing a new breed of materials." ScienceDaily. www.sciencedaily.com/releases/2013/10/131023141123.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
3D Printed Cookies Just in Time for Christmas

3D Printed Cookies Just in Time for Christmas

Reuters - Innovations Video Online (Dec. 18, 2014) A tech company in Spain have combined technology with cuisine to develop the 'Foodini', a 3D printer designed to print the perfect cookie for Santa. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Ford Expands Air Bag Recall Nationwide

Ford Expands Air Bag Recall Nationwide

Newsy (Dec. 18, 2014) The automaker added 447,000 vehicles to its recall list, bringing the total to more than 502,000. Video provided by Newsy
Powered by NewsLook.com
How Sony Hopes To Make Any Glasses 'Smart'

How Sony Hopes To Make Any Glasses 'Smart'

Newsy (Dec. 17, 2014) Sony's glasses module attaches to the temples of various eye- and sunglasses to add a display and wireless connectivity. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins