Featured Research

from universities, journals, and other organizations

Using sound waves for remote bomb detection

Date:
October 24, 2013
Source:
Vanderbilt University
Summary:
A remote acoustic detection system designed to identify homemade bombs can determine the difference between those that contain low-yield and high-yield explosive.

Schematic of the experiment setup.
Credit: Douglas Adams / Vanderbilt

A remote acoustic detection system designed to identify homemade bombs can determine the difference between those that contain low-yield and high-yield explosives.

Related Articles


That capability -- never before reported in a remote bomb detection system -- was described in a paper by Vanderbilt engineer Douglas Adams presented at the American Society of Mechanical Engineers Dynamic Systems and Control Conference on Oct. 23 in Stanford, CA.

A number of different tools are currently used for explosives detection. These range from dogs and honeybees to mass spectrometry, gas chromatography and specially designed X-ray machines.

"Existing methods require you to get quite close to the suspicious object," said Adams, Distinguished Professor of Civil and Environmental Engineering. "The idea behind our project is to develop a system that will work from a distance to provide an additional degree of safety."

Adams is developing the acoustic detection system with Christopher Watson and Jeffrey Rhoads at Purdue University and John Scales at the Colorado School of Mines as part of a major Office of Naval Research grant.

The new system consists of a phased acoustic array that focuses an intense sonic beam at a suspected improvised explosive device. At the same time, an instrument called a laser vibrometer is aimed at the object's casing and records how the casing is vibrating in response. The nature of the vibrations can reveal a great deal about what is inside the container.

"We are applying techniques of laser vibrometry that have been developed for non-destructive inspection of materials and structures to the problem of bomb detection and they are working quite well," Adams said.

In the current experiments, the engineers created two targets. One used an inert material that simulates the physical properties of low-yield explosive. The other was made from a simulant of high-yield explosive. They were fastened to acrylic caps to simulate plastic containers. Mechanical actuators substituted for the acoustic array to supply the sonic vibrations. The laser vibrometer was focused on the top of the plastic cap, corresponding to the outside of the bomb casing.

The tests clearly showed differences in the vibration patterns of the two caps that allow the researchers to distinguish between the two materials (hydroxyl-terminated polybutadiene polymer embedded with 50 percent and 75 percent by volume ammonium chloride crystals).

At the conference, Adams also showed a video of another test of the acoustic technique that showed it can differentiate between an empty container, one filled with water and one filled with a clay-like substance. The test used one-gallon plastic milk containers. In this case, the acoustic waves were produced by a device called an air driver. The empty jug had the largest vibrations while the jug containing the clay-like material had the smallest vibrations. The vibrations of the water-filled jug were in between.

The researchers have established that the best way to detect the contents of devices made of rigid material like metal is to use short ultrasonic waves. On the other hand, longer subsonic and infrasonic waves can be used to penetrate softer materials like plastics. Adam's colleagues at Purdue are studying frequencies that can penetrate other materials like cloth.

The project is part of a $7 million multi-university research initiative led by North Carolina State University and funded by Office of Naval Research grant N00014-10-1-0958.


Story Source:

The above story is based on materials provided by Vanderbilt University. The original article was written by David Salisbury. Note: Materials may be edited for content and length.


Cite This Page:

Vanderbilt University. "Using sound waves for remote bomb detection." ScienceDaily. ScienceDaily, 24 October 2013. <www.sciencedaily.com/releases/2013/10/131024090245.htm>.
Vanderbilt University. (2013, October 24). Using sound waves for remote bomb detection. ScienceDaily. Retrieved November 1, 2014 from www.sciencedaily.com/releases/2013/10/131024090245.htm
Vanderbilt University. "Using sound waves for remote bomb detection." ScienceDaily. www.sciencedaily.com/releases/2013/10/131024090245.htm (accessed November 1, 2014).

Share This



More Matter & Energy News

Saturday, November 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

EU, Russia, Ukraine Seal Breakthrough Gas Accord

EU, Russia, Ukraine Seal Breakthrough Gas Accord

AFP (Oct. 31, 2014) Russia agrees to resume gas deliveries to war-torn Ukraine through the winter in an EU-brokered, multi-billion dollar deal signed by the three parties in Brussels. Duration: 01:10 Video provided by AFP
Powered by NewsLook.com
Relief After “gas War” Is Averted

Relief After “gas War” Is Averted

Reuters - Business Video Online (Oct. 31, 2014) A gas war between Russia and Ukraine has been averted. But as Hayley Platt reports a deal was only reached after Kiev's western creditors agreed to partly funding the deal. Video provided by Reuters
Powered by NewsLook.com
Jaguar Land Rover Opens $800 Million Factory in Britain

Jaguar Land Rover Opens $800 Million Factory in Britain

AFP (Oct. 30, 2014) British luxury car manufacturer Jaguar Land Rover opened a $800 million engine manufacturing centre in western England, creating 1,400 jobs. Duration: 00:45 Video provided by AFP
Powered by NewsLook.com
SkyCruiser Concept Claims to Solve Problem With Flying Cars

SkyCruiser Concept Claims to Solve Problem With Flying Cars

Buzz60 (Oct. 30, 2014) A start-up company called Krossblade says its SkyCruiser concept flying car solves the problem with most flying car concepts. Mara Montalbano (@maramontalbano) explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins