Featured Research

from universities, journals, and other organizations

Enzyme restores function with diabetic kidney disease

Date:
October 25, 2013
Source:
University of California, San Diego Health Sciences
Summary:
Researchers say that, while a prevailing theory suggests elevated cellular levels of glucose ultimately result in diabetic kidney disease, the truth may, in fact, be quite the opposite. The findings could fundamentally change understanding of how diabetes-related diseases develop – and how they might be better treated.

This is a transmission electron micrograph of a cell mitochondrion.
Credit: Thomas Deerinck, National Center for Microscopy and Imaging Research, UC San Diego.

Researchers at the University of California, San Diego School of Medicine say that, while a prevailing theory suggests elevated cellular levels of glucose ultimately result in diabetic kidney disease, the truth may, in fact, be quite the opposite. The findings could fundamentally change understanding of how diabetes-related diseases develop -- and how they might be better treated.

Writing in the October 25 issue of Journal of Clinical Investigation, Kumar Sharma, MD, professor of medicine and director of the Center for Renal Translational Medicine (CRTM) at UC San Diego, Laura Dugan, MD, professor of medicine and Larry L. Hillblom Chair in geriatric medicine, Young You, PhD (CRTM), Robert Naviaux, MD, PhD, professor of medicine, and colleagues describe first-ever studies of real-time superoxide production in the kidneys of live mice with type 1 diabetes.

Current theory posits that impaired diabetic kidney function in humans as well as in mice is the result of chronically high glucose (sugar) levels which prompt energy-generating mitochondria in cells to produce an overabundance of superoxide anion -- a highly reactive, toxic molecule that ultimately leads to downstream cellular damage, organ dysfunction and disease.

But Sharma, who also works for the Veterans Administration San Diego Healthcare System, and colleagues upend this theory. Rather than detecting higher-than-normal levels of superoxide in the damaged kidneys of the diabetic mice, the researchers discovered reduced superoxide production and suppressed mitochondrial activity. When they stimulated the mitochondria by activating a key energy-sensing enzyme called AMPK, superoxide production increased but evidence of diabetic kidney disease markedly declined.

"Mitochondrial superoxide does not seem to be a causative factor of diabetic kidney disease," said Sharma. "Indeed, when mitochondrial superoxide is increased with AMPK activation, there is reduced kidney disease, suggesting that improving mitochondrial function and superoxide production is actually beneficial for diabetic complications. This idea is a sea change in the field of diabetic complications."

Sharma said the problematic reduction in AMPK activity is likely due to "caloric excess," which creates cellular imbalances associated with inflammation and fibrosis.

Boosting beneficial AMPK activity may be achieved through simple lifestyle changes, such as weight loss and exercise, Sharma noted. There is also considerable on-going research into the development of new agonist drugs that mimic or activate AMPK.

"In addition, methods will need to be developed to monitor mitochondrial function in animal models and in clinical trials," said Sharma. "The study of metabolites may be of great value to monitor mitochondrial non-invasively. Other methods, such as novel imaging tools like the one described in our paper, will also be important to follow mitochondrial superoxide production. It's interesting to note that recent studies by other groups have suggested that stimulating mitochondrial superoxide production may actually increase longevity and contribute to the benefits of exercise."


Story Source:

The above story is based on materials provided by University of California, San Diego Health Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. Laura L. Dugan, Young-Hyun You, Sameh S. Ali, Maggie Diamond-Stanic, Satoshi Miyamoto, Anne-Emilie DeCleves, Aleksander Andreyev, Tammy Quach, San Ly, Grigory Shekhtman, William Nguyen, Andre Chepetan, Thuy P. Le, Lin Wang, Ming Xu, Kacie P. Paik, Agnes Fogo, Benoit Viollet, Anne Murphy, Frank Brosius, Robert K. Naviaux, Kumar Sharma. AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function. Journal of Clinical Investigation, 2013; DOI: 10.1172/JCI66218

Cite This Page:

University of California, San Diego Health Sciences. "Enzyme restores function with diabetic kidney disease." ScienceDaily. ScienceDaily, 25 October 2013. <www.sciencedaily.com/releases/2013/10/131025185600.htm>.
University of California, San Diego Health Sciences. (2013, October 25). Enzyme restores function with diabetic kidney disease. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2013/10/131025185600.htm
University of California, San Diego Health Sciences. "Enzyme restores function with diabetic kidney disease." ScienceDaily. www.sciencedaily.com/releases/2013/10/131025185600.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
West Africa Gripped by Deadly Ebola Outbreak

West Africa Gripped by Deadly Ebola Outbreak

AFP (July 28, 2014) The worst-ever outbreak of the deadly Ebola epidemic grips west Africa, killing hundreds. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
Google's Next Frontier: The Human Body

Google's Next Frontier: The Human Body

Newsy (July 27, 2014) Google is collecting genetic and molecular information to paint a picture of the perfectly healthy human. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins