Featured Research

from universities, journals, and other organizations

New technique can find machinery gremlins 100 times faster

Date:
October 28, 2013
Source:
University of Lincoln
Summary:
Cost and time savings will be made with the development of a new algorithm that is more robust and efficient at detecting faults in industrial machines.

3D plot of raw data.
Credit: Image courtesy of University of Lincoln

Cost and time savings will be made with the development of a new algorithm that is more robust and efficient at detecting faults in industrial machines.

Academics from the Lincoln School of Engineering have devised a streamlined new process which can detect faults in industrial machines.

Dr Jun Chen, Michael Gallimore, Professor Chris Bingham and Dr Yu Zhang, from the University of Lincoln (UK), together with Professor Mahdi Mahfouf, from the University of Sheffield, have developed an algorithm that is more robust and efficient at identifying specific faults in automated mechanical processes.

With this improved detection and classification of faults, the time and money wasted on investigating false alarms will be reduced and a machine will be operational for longer periods.

The method combines two existing mathematical models for fault detection; a real-coded Genetic Algorithm (GA) and a K-means clustering methodology.

In a GA, a number of possible solutions to a given problem are changed and developed toward better solutions. Each set of possible solutions has a set of properties which can be mutated or altered. A GA proceeds to improve each set of solutions by repeating the application in each new generation of possible solutions until the optimum answer is found.

K-means clustering is a method of analysing a group of set objects with the aim of classifying the objects that are more similar to each other into clusters. Each observation then belongs to the cluster with the nearest central value.

The team at Lincoln discovered that the combination of these two processes into the G3Kmeans algorithm is more effective in quickly obtaining an optimum solution, requiring only 11 repetitions to detect a certain fault, whereas previous intuitive GA-based clustering methods go through more than 1,000.

Dr Chen said: "Data from industrial machines often involves a very complex search space. So, if you use conventional clustering algorithms you end up with misclassification. For example, non-faults are flagged as faults and vice versa. With the G3Kmeans algorithm you can reach a reliable classification -- that is the first step towards optimal maintenance.

"With the previous intuitive GA-based clustering methods, every iteration of the process will search for the optimum solution once. You run the algorithm many times and every time the algorithm is modified based on the solution found from the last one, gradually improving the solution to the problem each time. This is not very effective due to the use of intuitive mutation operator. In terms of industrial machines this is the first step in creating an algorithm that optimises the search for a solution and can identify a fault with certainty. This method will reduce maintenance costs by reducing the amount of false alarms requiring investigation."

Professor Mahdi Mahfouf, Head of the Intelligent Systems Research Laboratory at the University of Sheffield, added: "Nature-inspired algorithms have always had the advantage of dealing effectively with uncertain environments. Parts of these algorithms have already been applied in the metal industry for the production of steel and aluminium. This latest application is a testimony that processes that learn from human expertise or simply from nature are the way forward in solving real-world problems."

The team will now look to optimise this strategy by making the algorithm more wide-ranging to enable its use to detect solutions for a variety of specific applications.

Dr Chen is also collaborating with the Universidad Castilla-La Mancha, Spain, to apply this research to the operation of wind turbines.

The research is detailed in the publication Fault Detection: Classification, Techniques and Role in Industrial Systems Eds. Peter W. Tse and C. Leung, Nova Science Publishers, Inc.


Story Source:

The above story is based on materials provided by University of Lincoln. Note: Materials may be edited for content and length.


Cite This Page:

University of Lincoln. "New technique can find machinery gremlins 100 times faster." ScienceDaily. ScienceDaily, 28 October 2013. <www.sciencedaily.com/releases/2013/10/131028090412.htm>.
University of Lincoln. (2013, October 28). New technique can find machinery gremlins 100 times faster. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2013/10/131028090412.htm
University of Lincoln. "New technique can find machinery gremlins 100 times faster." ScienceDaily. www.sciencedaily.com/releases/2013/10/131028090412.htm (accessed April 17, 2014).

Share This



More Computers & Math News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Twitter, Apple Social Data Purchases Likely to Spur More Mergers and Acquisitions

Twitter, Apple Social Data Purchases Likely to Spur More Mergers and Acquisitions

TheStreet (Apr. 16, 2014) The social media data space is likely to see more mergers and acquisitions following Twitter Inc.'s acquisition of tweet analyzer Gnip Inc. on Tuesday and Apples Inc.'s purchase of Topsy Labs Inc. back in December. One firm in particular, the U.K.'s DataSift Inc., could be on the list of potential buyers. Among other social media startups that could be ripe for picking is Banjo, whose mobile app provides aggregated content by topic and location. Banjo could also be a good fit for Twitter. Video provided by TheStreet
Powered by NewsLook.com
Bitcoin Exchange Mt. Gox to Liquidate After Rebuilding Rejected

Bitcoin Exchange Mt. Gox to Liquidate After Rebuilding Rejected

TheStreet (Apr. 16, 2014) Bitcoin exchange Mt. Gox has agreed to liquidate after a Japanese court rejected its plans to rebuild, according to a report by the Wall Street Journal. Mt. Gox filed for bankruptcy protection in February after announcing about 850,000 bitcoins, worth around $454 million at today's rates, may have been stolen by hackers. It has since recovered 200,000 of the missing bitcoins. The court put Mt. Gox's assets under a provisional administrator's control until bankruptcy proceedings begin. Video provided by TheStreet
Powered by NewsLook.com
BlackBerry: The Crash That Launched 1,000 Startups

BlackBerry: The Crash That Launched 1,000 Startups

Reuters - Business Video Online (Apr. 16, 2014) Tech startups in BlackBerry's hometown of Waterloo, Ontario, are tapping talent from the struggling smartphone company and filling the void left in the region by its meltdown. Reuters correspondent Euan Rocha visits the region that could become Canada's Silicon Valley. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins