Featured Research

from universities, journals, and other organizations

Seeing in the dark: For infrared tracking and recognition, two sensors are better than one

Date:
October 29, 2013
Source:
American Institute of Physics (AIP)
Summary:
Thermal infrared (IR) energy is emitted from all things that have a temperature greater than absolute zero. Human eyes, primarily sensitive to shorter wavelength visible light, are unable to detect or differentiate between the longer-wavelength thermal IR "signatures" given off both by living beings and inanimate objects. While mechanical detection of IR radiation has been possible since Samuel Pierpont Langley invented the bolometer in 1880, devices that also can recognize and identify an IR source after detection have been more challenging to develop.

Photo of experiment (tracking an airplane).
Credit: Tianxu Zhang/Zheng Fang

Thermal infrared (IR) energy is emitted from all things that have a temperature greater than absolute zero. Human eyes, primarily sensitive to shorter wavelength visible light, are unable to detect or differentiate between the longer-wavelength thermal IR "signatures" given off both by living beings and inanimate objects. While mechanical detection of IR radiation has been possible since Samuel Pierpont Langley invented the bolometer in 1880, devices that also can recognize and identify an IR source after detection have been more challenging to develop.

In a recent paper in the journal Review of Scientific Instruments, researchers at two Chinese universities describe a novel instrument that successfully does both tasks with extremely high sensitivity by splitting the IR radiation given off by an object into a long-wave portion for detection and a mid-wave portion that can be spectrally analyzed for accurate identification.

Conventional remote sensing systems share a single sensor for both imaging and spectral data processing. The new instrument designed by the Chinese researchers has separate sensors for each task and uses a dichoric beamsplitter to divide the IR signal from an object into two components, a long-wave IR (LWIR) beam and a mid-wave IR (MWIR) beam.

"The LWIR beam goes to the imaging sensor and the MWIR to the spectrum recognition sensor," said Tianxu Zhang, corresponding author on the RSI paper and a physicist at the Huazhong University of Science and Technology. "This allows us to simultaneously obtain high spatial resolution, frame rate and spectrum resolution, resulting in higher sensitivity for measuring the IR spectrum than currently available combined IR imaging and spectral-analysis devices."

The researchers increased the capability of their instrument by mounting it on a two-dimensional rotating stage. "Once we locate a target of interest, especially a moving one, the stage lets us keep the object in view and sample its IR," Zhang said. "This gives us the ability to define an object's IR spectral curve very precisely and better use the data to distinguish it from another IR radiating source."

In their experiment, the researchers used the dual-based IR remote sensing system to observe the spectral curves of the sun and airplanes in flight from distances up to 6 kilometers (4 miles). "We learned that spectral curves of aerial moving targets are different when measured from different directions," Zhang said. "So, the more data collecting multiple curves for an object, the more distinctive its IR signature."

The researchers say that they plan to use their remote sensing system to build a database of such highly defined signatures. "We want to add the spectra of as many objects as possible to our dataset, thereby increasing the accuracy and reliability with which we can identify objects," Zhang said.


Story Source:

The above story is based on materials provided by American Institute of Physics (AIP). Note: Materials may be edited for content and length.


Journal Reference:

  1. Zheng Fang, Xinjian Yi, Xiangyan Liu, Wei Zhang, Tianxu Zhang. Dual-band infrared remote sensing system with combined long-wave infrared imaging and mid-wave infrared spectral analysis. Review of Scientific Instruments, 2013; 84 (8): 083106 DOI: 10.1063/1.4818668

Cite This Page:

American Institute of Physics (AIP). "Seeing in the dark: For infrared tracking and recognition, two sensors are better than one." ScienceDaily. ScienceDaily, 29 October 2013. <www.sciencedaily.com/releases/2013/10/131029142854.htm>.
American Institute of Physics (AIP). (2013, October 29). Seeing in the dark: For infrared tracking and recognition, two sensors are better than one. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2013/10/131029142854.htm
American Institute of Physics (AIP). "Seeing in the dark: For infrared tracking and recognition, two sensors are better than one." ScienceDaily. www.sciencedaily.com/releases/2013/10/131029142854.htm (accessed April 18, 2014).

Share This



More Matter & Energy News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins