Featured Research

from universities, journals, and other organizations

Volume of nuclear waste could be reduced by 90 percent, says new research

Date:
November 6, 2013
Source:
University of Sheffield
Summary:
Engineers have developed a way to significantly reduce the volume of some higher activity nuclear wastes, which will reduce the cost of interim storage and final disposal.

The researchers, from the University of Sheffield's Faculty of Engineering, have shown that mixing plutonium-contaminated waste with blast furnace slag and turning it into glass reduces its volume by 85-95 per cent. It also effectively locks in the radioactive plutonium, creating a stable end product.

The approach could also be applicable to treating large volume mixed wastes generated during the eventual clean-up of the damaged Fukushima plant.

"The overall volume of plutonium contaminated wastes from operations and decommissioning in the UK could be upwards of 31,000 m3, enough to fill the clock tower of Big Ben seven times over," says lead researcher, Professor Neil Hyatt. "Our process would reduce this waste volume to fit neatly within the confines of just one Big Ben tower."

The current treatment method for non-compactable plutonium contaminated wastes involves cement encapsulation, a process which typically increases the overall volume. Hyatt says, "If we can reduce the volume of waste that eventually needs to be stored and buried underground, we can reduce the costs considerably. At the same time, our process can stabilise the plutonium in a more corrosion resistant material, so this should improve the safety case and public acceptability of geological disposal."

Although the ultimate aim for higher activity wastes is geological disposal, no disposal sites have yet been agreed in the UK.

Plutonium contaminated waste is a special type of higher activity waste, associated with plutonium production, and includes filters, used personal protective equipment (PPE) and decommissioning waste such as metals and masonry.

Using cerium as a substitute for plutonium, the Sheffield team mixed representative plutonium contaminated wastes with blast furnace slag, a commonly available by-product from steel production, and heated them to turn the material into glass, a process known as vitrification.

A key element of the research, funded by Sellafield Ltd and the Engineering and Physical Sciences Research Council (EPSRC), was to show that a single process and additive could be used to treat the expected variation of wastes produced, to ensure the technique would be cost effective.

"Cerium is known to behave in similar ways to plutonium so provides a good, but safe, way to develop techniques like this," explains Professor Hyatt. "Our method produces a robust and stable final product, because the thermal treatment destroys all plastics and organic material. This is an advantage because it is difficult to predict with certainty how the degradation of plastic and organic materials affects the movement of plutonium underground."

Professor Hyatt is now working on optimising the vitrification process to support full scale demonstration and plans future investigation of small scale plutonium experiments.


Story Source:

The above story is based on materials provided by University of Sheffield. Note: Materials may be edited for content and length.


Journal Reference:

  1. N.C. Hyatt, R.R. Schwarz, P.A. Bingham, M.C. Stennett, C.L. Corkhill, P.G. Heath, R.J. Hand, M. James, A. Pearson, S. Morgan. Thermal treatment of simulant plutonium contaminated materials from the Sellafield site by vitrification in a blast-furnace slag. Journal of Nuclear Materials, 2014; 444 (1-3): 186 DOI: 10.1016/j.jnucmat.2013.08.019

Cite This Page:

University of Sheffield. "Volume of nuclear waste could be reduced by 90 percent, says new research." ScienceDaily. ScienceDaily, 6 November 2013. <www.sciencedaily.com/releases/2013/11/131106101616.htm>.
University of Sheffield. (2013, November 6). Volume of nuclear waste could be reduced by 90 percent, says new research. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2013/11/131106101616.htm
University of Sheffield. "Volume of nuclear waste could be reduced by 90 percent, says new research." ScienceDaily. www.sciencedaily.com/releases/2013/11/131106101616.htm (accessed July 28, 2014).

Share This




More Earth & Climate News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
Phoenix Thunderstorm Creates Giant Wall of Dust

Phoenix Thunderstorm Creates Giant Wall of Dust

Reuters - US Online Video (July 26, 2014) A giant wall of dust slowly moves north over the Phoenix area after a summer monsoon thunderstorm. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Rare Lemur Among Baby Animals Debuted at Cleveland Zoo

Rare Lemur Among Baby Animals Debuted at Cleveland Zoo

Reuters - US Online Video (July 26, 2014) A rare baby Lemur is among several baby animals getting their public debut at a Cleveland zoo. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins