Featured Research

from universities, journals, and other organizations

All aboard the nanotrain network: Tiny self-assembling transport networks, powered by nano-scale motors and controlled by DNA

Date:
November 10, 2013
Source:
University of Oxford
Summary:
Tiny self-assembling transport networks, powered by nano-scale motors and controlled by DNA, have been developed by scientists. The system can construct its own network of tracks spanning tens of micrometres in length, transport cargo across the network and even dismantle the tracks.

Nanotrain network created by scientists at Oxford University: green dye-carrying shuttles after 'refuelling' with ATP travel towards the center of the network with their cargoes of green dye.
Credit: Adam Wollman/Oxford University

Tiny self-assembling transport networks, powered by nano-scale motors and controlled by DNA, have been developed by scientists at Oxford University and Warwick University.

Related Articles


The system can construct its own network of tracks spanning tens of micrometres in length, transport cargo across the network and even dismantle the tracks.

The work is published in Nature Nanotechnology and was supported by the Engineering and Physical Sciences Research Council and the Biotechnology and Biological Sciences Research Council.

Researchers were inspired by the melanophore, used by fish cells to control their colour. Tracks in the network all come from a central point, like the spokes of a bicycle wheel. Motor proteins transport pigment around the network, either concentrating it in the centre or spreading it throughout the network. Concentrating pigment in the centre makes the cells lighter, as the surrounding space is left empty and transparent.

The system developed by the Oxford University team is very similar, and is built from DNA and a motor protein called kinesin. Powered by ATP fuel, kinesins move along the micro-tracks carrying control modules made from short strands of DNA. 'Assembler' nanobots are made with two kinesin proteins, allowing them to move tracks around to assemble the network, whereas the 'shuttles' only need one kinesin protein to travel along the tracks.

'DNA is an excellent building block for constructing synthetic molecular systems, as we can program it to do whatever we need,' said Adam Wollman, who conducted the research at Oxford University's Department of Physics. 'We design the chemical structures of the DNA strands to control how they interact with each other. The shuttles can be used to either carry cargo or deliver signals to tell other shuttles what to do.

'We first use assemblers to arrange the track into 'spokes', triggered by the introduction of ATP. We then send in shuttles with fluorescent green cargo which spread out across the track, covering it evenly. When we add more ATP, the shuttles all cluster in the centre of the track where the spokes meet. Next, we send signal shuttles along the tracks to tell the cargo-carrying shuttles to release the fluorescent cargo into the environment, where it disperses. We can also send shuttles programmed with 'dismantle' signals to the central hub, telling the tracks to break up.'

This demonstration used fluorescent green dyes as cargo, but the same methods could be applied to other compounds. As well as colour changes, spoke-like track systems could be used to speed up chemical reactions by bringing the necessary compounds together at the central hub. More broadly, using DNA to control motor proteins could enable the development of more sophisticated self-assembling systems for a wide variety of applications.


Story Source:

The above story is based on materials provided by University of Oxford. Note: Materials may be edited for content and length.


Journal Reference:

  1. Adam J. M. Wollman, Carlos Sanchez-Cano, Helen M. J. Carstairs, Robert A. Cross, Andrew J. Turberfield. Transport and self-organization across different length scales powered by motor proteins and programmed by DNA. Nature Nanotechnology, 2013; DOI: 10.1038/nnano.2013.230

Cite This Page:

University of Oxford. "All aboard the nanotrain network: Tiny self-assembling transport networks, powered by nano-scale motors and controlled by DNA." ScienceDaily. ScienceDaily, 10 November 2013. <www.sciencedaily.com/releases/2013/11/131110184442.htm>.
University of Oxford. (2013, November 10). All aboard the nanotrain network: Tiny self-assembling transport networks, powered by nano-scale motors and controlled by DNA. ScienceDaily. Retrieved February 1, 2015 from www.sciencedaily.com/releases/2013/11/131110184442.htm
University of Oxford. "All aboard the nanotrain network: Tiny self-assembling transport networks, powered by nano-scale motors and controlled by DNA." ScienceDaily. www.sciencedaily.com/releases/2013/11/131110184442.htm (accessed February 1, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, February 1, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nanoscale Sensor Could Help Wine Producers and Clinical Scientists

Nanoscale Sensor Could Help Wine Producers and Clinical Scientists

Reuters - Innovations Video Online (Jan. 30, 2015) A nanosensor that mimics the oral effects and sensations of drinking wine has been developed by Danish and Portuguese researchers. Jim Drury saw it in operation. Video provided by Reuters
Powered by NewsLook.com
Dog-Loving Astronaut Wins Best Photo of 2015

Dog-Loving Astronaut Wins Best Photo of 2015

Buzz60 (Jan. 30, 2015) Retired astronaut and television host, Leland Melvin, snuck his dogs into the NASA studio so they could be in his official photo. As Mara Montalbano (@maramontalbano) shows us, the secret is out. Video provided by Buzz60
Powered by NewsLook.com
U.S. Wants to Analyze DNA from 1 Million People

U.S. Wants to Analyze DNA from 1 Million People

Reuters - US Online Video (Jan. 30, 2015) The U.S. has proposed analyzing genetic information from more than 1 million American volunteers to learn how genetic variants affect health and disease. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Rarest Cat on Planet Caught Attacking Monkeys on Camera

Rarest Cat on Planet Caught Attacking Monkeys on Camera

Buzz60 (Jan. 30, 2015) An African Golden Cat, the rarest large cat on the planet was recently caught on camera by scientists trying to study monkeys. The cat comes out of nowhere to attack those monkeys. Patrick Jones (@Patrick_E_Jones) has the rest. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins