Featured Research

from universities, journals, and other organizations

Transcription factor may protect against hepatic injury caused by hepatitis C, alcohol

Date:
November 11, 2013
Source:
Elsevier
Summary:
New data suggest that the transcription factor FOXO3 may protect against alcohol-induced liver injury. Researchers determined that alcohol given to mice deficient in FOXO3 caused severe liver injury resembling human alcoholic hepatitis. Further they found that although hepatitis C virus (HCV) and alcohol independently activated FOXO3, in combination they suppressed FOXO3, reduced expression of cytoprotective genes, and worsened liver injury.

New data suggest that the transcription factor FOXO3 may protect against alcohol-induced liver injury. Researchers determined that alcohol given to mice deficient in FOXO3 caused severe liver injury resembling human alcoholic hepatitis. Further they found that although hepatitis C virus (HCV) and alcohol independently activated FOXO3, in combination they suppressed FOXO3, reduced expression of cytoprotective genes, and worsened liver injury. The results are published in The American Journal of Pathology.

Related Articles


"There is emerging evidence that the FOXO transcription factor family plays a critical role in metabolic, antioxidant, and cell death responses in the liver. The role of FOXO in injury processes is complex as FOXO transcription programs can either be cytoprotective or cytotoxic, and well-documented examples of both phenomena are numerous," says Steven A. Weinman, MD, PhD, Department of Internal Medicine at the University of Kansas Medical Center.

Based on such emerging evidence, Dr. Weinman's group fed alcohol to FOXO3-deficient mice for three weeks. One third of these mice developed severe hepatic steatosis (infiltration of liver cells with fat), neutrophil infiltration, and necrosis, similar to that seen in patients with alcoholic hepatitis. In some mice, levels of the liver enzyme alanine aminotransferase (ALT) increased tenfold compared to controls.

Investigators also induced severe liver injury with alcohol in a mouse model of HCV (transgenic HCV/Sod2+/-). These animals had elevated ALT; increased ICAM-1 expression and caspase 3 cleavage, and severe steatosis, lobular inflammation, and ballooning degeneration of liver cells. In these mice, degree of liver injury correlated with levels of the mitochondrial antioxidant enzyme superoxide dismutase (SOD2). (SOD2 is also thought to play a part in protecting the liver from alcoholic injury.) Alcohol-treated HCV/Sod2+/- mice also showed a greater concentration of FOXO3 in the cytosol of the cell compared to the nuclear location found in other types of mice.

Weinman continues, "One of the important unanswered questions about alcoholic liver disease has been why only a minority of those who drink, including those who drink heavily, ever develop liver disease. In most people, the liver has efficient protection mechanisms against alcohol. Our results indicate that FOXO3 is a novel alcohol protection factor that is disrupted by the HCV-alcohol combination. We therefore think that modulation of the FOXO3 pathway is a potential therapeutic approach for HCV-alcohol-induced liver injury."

In cell culture, either HCV or alcohol alone produced an increase in FOXO3 transcriptional activity. However, Weinman and colleagues found that although the effects of both of these stress stimuli on FOXO3 were similar, the mechanisms of action were different. For example, although HCV activation was associated with translocation of FOXO3 from cytosol to the nucleus, alcohol produced transcriptional activation without a prominent change in the nuclear-cytosolic ratio. Another difference found was that HCV, but not alcohol, caused a miRNA-dependent suppression of SOD2 translation.

That HCV infection and alcohol exposure appear to work in synergy to produce effects that are different from those seen with either alone was a "novel and unexpected" finding, says Weinman. The suppression of FOXO3 by the combination of HCV and alcohol is attributed in part to nuclear export and a decreased protein half-life that does not occur with either HCV or alcohol alone. "The results indicate that FOXO3 is a novel alcohol protection factor that is disrupted by the HCV-alcohol combination," concludes Weinman.

In the same issue of The American Journal of Pathology, another team of investigators from the University of Kansas Medical Center, led by Dr. Wen-Xing Ding, PhD, Department of Pharmacology, Toxicology, and Therapeutics, also report that FOXO3 protects against acute ethanol-induced steatosis and liver injury. This study demonstrates that FOXO3 is necessary for activation of autophagy, a cellular degradation pathway that protects against alcohol-induced liver injury by removing damaged mitochondria. Acute alcohol-treated FOXO3-deficient mice developed more severe liver injury than that of wild-type mice, and this was attributed to decreased expression of autophagy-related genes.

"Our study," says Dr. Ding, "was an acute alcohol model whereas the study in Dr. Weinman's laboratory was a chronic alcohol feeding model; however, both studies show that FOXO3 is protective. Thus, these results indicate that FOXO3 is an important general mechanism by activating multiple cellular protective functions that the normal liver uses to resist the toxic effects of alcohol."


Story Source:

The above story is based on materials provided by Elsevier. Note: Materials may be edited for content and length.


Journal References:

  1. Batbayar Tumurbaatar, Irina Tikhanovich, Zhuan Li, Jinyu Ren, Robert Ralston, Sudhakiranmayi Kuravi, Roosevelt Campbell, Gaurav Chaturvedi, Ting-Ting Huang, Jie Zhao, Junfang Hao, Maura O’Neil, Steven A. Weinman. Hepatitis C and Alcohol Exacerbate Liver Injury by Suppression of FOXO3. The American Journal of Pathology, 2013; DOI: 10.1016/j.ajpath.2013.08.013
  2. Hong-Min Ni, Kuo Du, Min You, Wen-Xing Ding. Critical Role of FoxO3a in Alcohol-Induced Autophagy and Hepatotoxicity. The American Journal of Pathology, 2013; DOI: 10.1016/j.ajpath.2013.08.011

Cite This Page:

Elsevier. "Transcription factor may protect against hepatic injury caused by hepatitis C, alcohol." ScienceDaily. ScienceDaily, 11 November 2013. <www.sciencedaily.com/releases/2013/11/131111091528.htm>.
Elsevier. (2013, November 11). Transcription factor may protect against hepatic injury caused by hepatitis C, alcohol. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2013/11/131111091528.htm
Elsevier. "Transcription factor may protect against hepatic injury caused by hepatitis C, alcohol." ScienceDaily. www.sciencedaily.com/releases/2013/11/131111091528.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rural India's Low-Cost Sanitary Pad Revolution

Rural India's Low-Cost Sanitary Pad Revolution

AFP (Nov. 28, 2014) — One man hopes his invention -– a machine that produces cheap sanitary pads –- will help empower Indian women. Duration: 01:51 Video provided by AFP
Powered by NewsLook.com
Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) — In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
WHO Says Male Ebola Survivors Should Abstain From Sex

WHO Says Male Ebola Survivors Should Abstain From Sex

Newsy (Nov. 28, 2014) — WHO cites four studies that say Ebola can still be detected in semen up to 82 days after the onset of symptoms. Video provided by Newsy
Powered by NewsLook.com
Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins