Featured Research

from universities, journals, and other organizations

Single-atom bit forms smallest memory in the world

Date:
November 14, 2013
Source:
Karlsruhe Institute of Technology
Summary:
One atom equals one bit: According to this design principle, we would like to construct magnetic data memories in the future. Presently, a compound of several million atoms is needed to stabilize a magnetic bit in a way that hard disk data are secure for several years. However, researchers have just made a big step towards a single-atom bit: They fixed a single atom on a surface such that the magnetic spin remained stable for ten minutes.

The scanning tunneling microscope makes single holmium atoms on a platinum surface visible.
Credit: KIT/T. Miyamachi

One atom equals one bit: According to this design principle, we would like to construct magnetic data memories in the future. Presently, a compound of several million atoms is needed to stabilize a magnetic bit in a way that hard disk data are secure for several years. However, researchers from KIT have just made a big step towards a single-atom bit: They fixed a single atom on a surface such that the magnetic spin remained stable for ten minutes.

Their report is published in the current issue of the Nature magazine.

"Often, a single atom fixed to a substrate is so sensitive that its magnetic orientation is stable for fractions of a microsecond (200 nanoseconds) only," Wulf Wulfhekel from Karlsruhe Institute of Technology (KIT) explains. Together with colleagues from Halle, he has now succeeded in extending this period by a factor of about a billion to several minutes. "This does not only open up the possibility of designing more compact computer memories, but could also be the basis for the setup of quantum computers," Wulfhekel says. Quantum computers are based on quantum physics properties of atomic systems. In theory at least, their speed might exceed that of classical computers by several factors.

In their experiment, the researchers placed a single holmium atom onto a platinum substrate. At temperatures close to absolute zero, i.e. at about 1 degree Kelvin, they measured the magnetic orientation of the atom using the fine tip of a scanning tunneling microscope. The magnetic spin changed after about 10 minutes only. "Hence, the magnetic spin of the system is stable for a period that is about a billion times longer than that of comparable atomic systems," Wulfhekel emphasizes. For the experiment, a novel scanning tunneling microscope of KIT was applied. Thanks to its special cooling system for the temperature range close to absolute zero, it is nearly vibration-free and allows for long measurement times.

"To stabilize the magnetic moment for longer periods of time, we suppressed the impact of the surroundings on the atom," Arthur Ernst from the Max Planck Institute of Microstructure Physics explains. He performed theoretical calculations for the experiment. Normally, the electrons of the substrate and of the atom interact quantum-mechanically and destabilize the spin of the atom within microseconds or even faster. When using holmium and platinum at low temperatures, disturbing interactions are excluded due to the symmetry properties of the quantum system. "In principle, holmium and platinum are invisible to each other as far as spin scattering is concerned," Ernst says. Now, the holmium spin might be adjusted and information might be written by means of external magnetic fields. This would be the prerequisite for the development of compact data memories or quantum computers.


Story Source:

The above story is based on materials provided by Karlsruhe Institute of Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Toshio Miyamachi, Tobias Schuh, Tobias Mδrkl, Christopher Bresch, Timofey Balashov, Alexander Stφhr, Christian Karlewski, Stephan Andrι, Michael Marthaler, Martin Hoffmann, Matthias Geilhufe, Sergey Ostanin, Wolfram Hergert, Ingrid Mertig, Gerd Schφn, Arthur Ernst, Wulf Wulfhekel. Stabilizing the magnetic moment of single holmium atoms by symmetry. Nature, 2013; 503 (7475): 242 DOI: 10.1038/nature12759

Cite This Page:

Karlsruhe Institute of Technology. "Single-atom bit forms smallest memory in the world." ScienceDaily. ScienceDaily, 14 November 2013. <www.sciencedaily.com/releases/2013/11/131114094804.htm>.
Karlsruhe Institute of Technology. (2013, November 14). Single-atom bit forms smallest memory in the world. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2013/11/131114094804.htm
Karlsruhe Institute of Technology. "Single-atom bit forms smallest memory in the world." ScienceDaily. www.sciencedaily.com/releases/2013/11/131114094804.htm (accessed July 28, 2014).

Share This




More Computers & Math News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Teen's Phone Ignites Under Her Pillow; How Real Is The Risk?

Teen's Phone Ignites Under Her Pillow; How Real Is The Risk?

Newsy (July 28, 2014) — A Texas teen's Samsung phone apparently ignited while she slept, but what was the real problem here? Video provided by Newsy
Powered by NewsLook.com
Google's Next Frontier: The Human Body

Google's Next Frontier: The Human Body

Newsy (July 27, 2014) — Google is collecting genetic and molecular information to paint a picture of the perfectly healthy human. Video provided by Newsy
Powered by NewsLook.com
Cellphone Unlocking Bill Clears U.S. House, Heads to Obama

Cellphone Unlocking Bill Clears U.S. House, Heads to Obama

Reuters - US Online Video (July 27, 2014) — Congress gets rid of pesky law that made it illegal to "unlock" mobile phones without permission, giving consumers the option to use the same phone on a competitor's wireless network. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Congress OKs Unlocking Phones From Carriers

Congress OKs Unlocking Phones From Carriers

Newsy (July 26, 2014) — A bill legalizing "unlocking," or untethering a phone from its default wireless carrier, has passed Congress and is expected to be signed into law. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins