Featured Research

from universities, journals, and other organizations

Single-atom bit forms smallest memory in the world

Date:
November 14, 2013
Source:
Karlsruhe Institute of Technology
Summary:
One atom equals one bit: According to this design principle, we would like to construct magnetic data memories in the future. Presently, a compound of several million atoms is needed to stabilize a magnetic bit in a way that hard disk data are secure for several years. However, researchers have just made a big step towards a single-atom bit: They fixed a single atom on a surface such that the magnetic spin remained stable for ten minutes.

The scanning tunneling microscope makes single holmium atoms on a platinum surface visible.
Credit: KIT/T. Miyamachi

One atom equals one bit: According to this design principle, we would like to construct magnetic data memories in the future. Presently, a compound of several million atoms is needed to stabilize a magnetic bit in a way that hard disk data are secure for several years. However, researchers from KIT have just made a big step towards a single-atom bit: They fixed a single atom on a surface such that the magnetic spin remained stable for ten minutes.

Their report is published in the current issue of the Nature magazine.

"Often, a single atom fixed to a substrate is so sensitive that its magnetic orientation is stable for fractions of a microsecond (200 nanoseconds) only," Wulf Wulfhekel from Karlsruhe Institute of Technology (KIT) explains. Together with colleagues from Halle, he has now succeeded in extending this period by a factor of about a billion to several minutes. "This does not only open up the possibility of designing more compact computer memories, but could also be the basis for the setup of quantum computers," Wulfhekel says. Quantum computers are based on quantum physics properties of atomic systems. In theory at least, their speed might exceed that of classical computers by several factors.

In their experiment, the researchers placed a single holmium atom onto a platinum substrate. At temperatures close to absolute zero, i.e. at about 1 degree Kelvin, they measured the magnetic orientation of the atom using the fine tip of a scanning tunneling microscope. The magnetic spin changed after about 10 minutes only. "Hence, the magnetic spin of the system is stable for a period that is about a billion times longer than that of comparable atomic systems," Wulfhekel emphasizes. For the experiment, a novel scanning tunneling microscope of KIT was applied. Thanks to its special cooling system for the temperature range close to absolute zero, it is nearly vibration-free and allows for long measurement times.

"To stabilize the magnetic moment for longer periods of time, we suppressed the impact of the surroundings on the atom," Arthur Ernst from the Max Planck Institute of Microstructure Physics explains. He performed theoretical calculations for the experiment. Normally, the electrons of the substrate and of the atom interact quantum-mechanically and destabilize the spin of the atom within microseconds or even faster. When using holmium and platinum at low temperatures, disturbing interactions are excluded due to the symmetry properties of the quantum system. "In principle, holmium and platinum are invisible to each other as far as spin scattering is concerned," Ernst says. Now, the holmium spin might be adjusted and information might be written by means of external magnetic fields. This would be the prerequisite for the development of compact data memories or quantum computers.


Story Source:

The above story is based on materials provided by Karlsruhe Institute of Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Toshio Miyamachi, Tobias Schuh, Tobias Mδrkl, Christopher Bresch, Timofey Balashov, Alexander Stφhr, Christian Karlewski, Stephan Andrι, Michael Marthaler, Martin Hoffmann, Matthias Geilhufe, Sergey Ostanin, Wolfram Hergert, Ingrid Mertig, Gerd Schφn, Arthur Ernst, Wulf Wulfhekel. Stabilizing the magnetic moment of single holmium atoms by symmetry. Nature, 2013; 503 (7475): 242 DOI: 10.1038/nature12759

Cite This Page:

Karlsruhe Institute of Technology. "Single-atom bit forms smallest memory in the world." ScienceDaily. ScienceDaily, 14 November 2013. <www.sciencedaily.com/releases/2013/11/131114094804.htm>.
Karlsruhe Institute of Technology. (2013, November 14). Single-atom bit forms smallest memory in the world. ScienceDaily. Retrieved September 14, 2014 from www.sciencedaily.com/releases/2013/11/131114094804.htm
Karlsruhe Institute of Technology. "Single-atom bit forms smallest memory in the world." ScienceDaily. www.sciencedaily.com/releases/2013/11/131114094804.htm (accessed September 14, 2014).

Share This



More Computers & Math News

Sunday, September 14, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Frustration As Drone Industry Outpaces Regulation In U.S.

Frustration As Drone Industry Outpaces Regulation In U.S.

Newsy (Sep. 14, 2014) — U.S. firms worry they’re falling behind in the marketplace as the FAA considers how to regulate commercial drones. Video provided by Newsy
Powered by NewsLook.com
iPhone 6 Sales Mark Yet Another Year Of Records, Glitches

iPhone 6 Sales Mark Yet Another Year Of Records, Glitches

Newsy (Sep. 13, 2014) — Customers looking to preorder the iPhone 6 on Friday experienced a few hiccups thanks to record demand for the device overnight. Video provided by Newsy
Powered by NewsLook.com
Is Photo-Sharing App Tiiny Really A Snapchat Competitor?

Is Photo-Sharing App Tiiny Really A Snapchat Competitor?

Newsy (Sep. 13, 2014) — Tiiny, a photo-sharing app, is being called a Snapchat competitor. But after testing it ourselves, we'd have to disagree. Video provided by Newsy
Powered by NewsLook.com
Ebola Batters Sierra Leone Economy Too

Ebola Batters Sierra Leone Economy Too

Reuters - Business Video Online (Sep. 12, 2014) — The World Health Organisation warns that local health workers in West Africa can't keep up with Ebola - and among those countries hardest hit by the outbreak, the economic damage is coming into focus, too. As David Pollard reports, Sierra Leone admits that growth in one of the poorest economies in the region is taking a beating. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins