Featured Research

from universities, journals, and other organizations

Smart windows: Understanding how hydration affects color-changing windows can boost efficiency

Date:
November 20, 2013
Source:
The Agency for Science, Technology and Research (A*STAR)
Summary:
Electrochromic materials dynamically alter how they transmit light in response to an applied electrical signal. Engineers are currently working to turn these compounds into 'smart windows' for buildings that change from transparent to colored states at the flick of a switch. Such devices can help to prevent heat loss and maximize the amount of natural light passing through windows.

‘Smart’ films that change color on demand can be fabricated more efficiently, thanks to a new mechanistic study.
Credit: Copyright : 2013 A*STAR Institute of Materials Research and Engineering

Electrochromic materials dynamically alter how they transmit light in response to an applied electrical signal. Engineers are currently working to turn these compounds into 'smart windows' for buildings that change from transparent to colored states at the flick of a switch. Such devices can help to prevent heat loss and maximize the amount of natural light passing through windows. Sing Yang Chiam from the A*STAR Institute of Materials Research and Engineering in Singapore and co-workers have discovered how to improve the manufacturing and performance of smart windows by elucidating the critical roles that water molecules play during coloration.

Nickel oxide (NiO) is a low-cost, inorganic compound widely used as an anode material inside smart windows because it is a reversible color-changer. Unlike other electrochromic substances, however, researchers have struggled to comprehend how coloration occurs in NiO in the presence of common aqueous electrolytes. Part of the problem is that NiO can form different crystal structures in its bleached and colored states, depending on how much water becomes incorporated into the material.

Chiam and his team set out to unravel this puzzle with a 'chemical bath deposition' technique that allowed rapid fabrication of NiO thin films simply by dipping a conductive glass slide into a nickel precursor solution (see image). The researchers annealed the films at increasingly elevated temperatures to gradually drive water out of NiO, checking its structure with X-ray diffraction and infrared spectroscopy along the way. They also investigated how these structures had changed after multiple electrochromic color-change cycles.

The team's experiments revealed a complex coloration mechanism involving water and NiO particles. Initially, two intertwined reactions hydrated the thin film by turning NiO into nickel hydroxide. This process enhanced the material's optical response to electrical signals by allowing more of the thin film to contribute to coloration reactions. However, repeated cycling caused 'over-hydration' that trapped water molecules inside the thin film structure -- a development that degrades electrochromic activity by generating irreversibly colored nickel oxide hydroxide grains.

The researchers found that a simple high-temperature annealing process could mitigate the effects of over-hydration in the NiO thin film. This improved mechanistic knowledge -- in combination with their simple and scalable chemical dip coating technique -- helped them to achieve one of the best optical modulations reported for NiO films.

Currently, the team is investigating how to extend their work to flexible substrates. "Fabricating electrochromic thin films on rolls of plastic could make retrofitting onto existing windows affordable and easy," explains Chiam.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering


Story Source:

The above story is based on materials provided by The Agency for Science, Technology and Research (A*STAR). Note: Materials may be edited for content and length.


Journal Reference:

  1. Yi Ren, Wai Kin Chim, Li Guo, Hendrix Tanoto, Jisheng Pan, Sing Yang Chiam. The coloration and degradation mechanisms of electrochromic nickel oxide. Solar Energy Materials and Solar Cells, 2013; 116: 83 DOI: 10.1016/j.solmat.2013.03.042

Cite This Page:

The Agency for Science, Technology and Research (A*STAR). "Smart windows: Understanding how hydration affects color-changing windows can boost efficiency." ScienceDaily. ScienceDaily, 20 November 2013. <www.sciencedaily.com/releases/2013/11/131120103446.htm>.
The Agency for Science, Technology and Research (A*STAR). (2013, November 20). Smart windows: Understanding how hydration affects color-changing windows can boost efficiency. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2013/11/131120103446.htm
The Agency for Science, Technology and Research (A*STAR). "Smart windows: Understanding how hydration affects color-changing windows can boost efficiency." ScienceDaily. www.sciencedaily.com/releases/2013/11/131120103446.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
What Is Magic Leap, And Why Is It Worth $500M?

What Is Magic Leap, And Why Is It Worth $500M?

Newsy (Oct. 22, 2014) — Magic Leap isn't publicizing much more than a description of its product, but it’s been enough for Google and others to invest more than $500M. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins