Featured Research

from universities, journals, and other organizations

Drug strategy blocks leading driver of cancer

Date:
November 20, 2013
Source:
University of California - San Francisco
Summary:
The protein in cells that most often drives the development of cancers has eluded scientists' efforts to block it for three decades -- until now.

The protein in cells that most often drives the development of cancers has eluded scientists' efforts to block it for three decades -- until now.

Using a new strategy, UC San Francisco researchers have succeeded in making small molecules that irreversibly target a mutant form of this protein, called ras, without binding to the normal form. This feature distinguishes the molecules from all other targeted drug treatments in cancer, according to the researchers.

When tested on human lung cancer cells grown in culture, the molecules efficiently killed the ras-driven cancer cells.

Ras is abnormal in about three out of 10 cancers. It is the most commonly activated protein in lung tumors, the leading cancer killer in the United States, as well as in colon cancers, the third leading cause of cancer death. Ras also is mutated in a vast majority of pancreatic cancers, which are almost always fatal and the fourth leading cause of cancer death.

The protein has long been viewed as an obvious target for drug treatment in cancer, but since the 1980s drug candidates developed by several companies to block ras function have failed in clinical trials.

The UCSF research group, led by Kevan Shokat, PhD, a Howard Hughes Medical Institute investigator and chair of the UCSF Department of Cellular and Molecular Pharmacology, designed small molecules that attach irreversibly to ras within a previously unknown, normally short-lived pocket that appears on the mutant protein as it changes shape.

Their work was published online Nov. 20 in the journal Nature.

Targeting an 'Undruggable' Protein

Many experienced pharmaceutical chemists had come to regard ras as undruggable, Shokat said. Among the failed strategies were conventional approaches aimed at designing small molecules to compete with the molecule called GTP, which naturally activates ras within the cell. GTP binds so tightly to ras that it is difficult for any drug to compete by binding instead and blocking activation.

But given its importance and the fact that few new cancer targets have been identified recently, drug companies have begun giving ras research another chance.

In its normal form, ras plays a key role in driving cell growth. When it is mutated, and thus activated in an uncontrolled manner, it triggers a chain of events within a tumor cell that includes abnormal activation or inhibition of other genes that then promote cancer. Some of the proteins encoded by these downstream genes have been targeted by promising treatments now in clinical trials. But tumors with abnormal ras often do not respond well to these single therapies, pushing researchers to evaluate various combinations of drugs.

The latest achievement further justifies a renewed interest in ras in the cancer research community and pharmaceutical industry, according to Frank McCormick, PhD, FRS, an expert on cancer biochemistry. McCormick is also the founder of Onyx Pharmaceuticals, director of the Helen Diller Family Comprehensive Cancer Center at UCSF, and now a leader of a new, $10-million-per-year initiative launched this year by the National Cancer Institutes to target ras.

"Cancers driven by ras are the most difficult to treat and are excluded from other targeted therapies, as they fail to respond," McCormick said. "Dr. Shokat and his team have taken a brilliantly innovative approach to this tough target, and, for the first time, have developed a strategy for targeting a mutant form of ras with exquisite specificity."

Two percent of all cancers have the specific mutation targeted in the study, including 7 percent of all lung cancers, according to Shokat. "We are confident that our findings can serve as the starting point for drug-discovery efforts targeting this specific mutation, and eventually other mutations," he said.

Ras Activated by Single Point Mutation

A mutated ras gene is the quintessential human "oncogene," one in which small alterations in the gene's DNA change its genetic blueprint, and thus the shape and function of the protein it encodes, or the amount of protein produced. The change converts the protein from one that helps guide normal growth and development into one that drives abnormal growth.

In some cases, a mutation that switches out just one of the DNA building blocks sequenced together to make a gene can alter the function of the resultant protein and lead to cancer.

Scores of oncogenes now are known, but, according to Shokat, "Ras was actually the first human oncogene found to be activated by a single point mutation. People have tried to drug every part of ras and looked at every nook and cranny on it and screened a million compounds and never found anything that inhibits it well."

Shokat and colleagues engineered molecules that inhibit the activity of ras in which a single point mutation caused a change in one specific amino acid among the hundreds that link and fold to determine the protein's form and function. The drug-like molecules depend on binding to a cysteine amino acid that is abnormally present near the newly identified pocket in the mutant ras.

Shokat is using the best ras inhibitor to come out of the study as a template for further drug development. UCSF has applied for a patent covering this lead compound, and licensed the intellectual property to Araxes Pharma, a new company co-founded by Shokat to advance development of a drug to target ras. The start-up has formed a partnership with Janssen Biotech, a subsidiary of Johnson & Johnson.

Because the molecules Shokat's research group created block only a mutant, cancer-driving form of ras, and not the normal ras found in the cells of healthy tissue, a drug developed according to this approach should have great specificity in targeting cancer while sparing normal tissue, Shokat said.


Story Source:

The above story is based on materials provided by University of California - San Francisco. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jonathan M. Ostrem, Ulf Peters, Martin L. Sos, James A. Wells, Kevan M. Shokat. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature, 2013; DOI: 10.1038/nature12796

Cite This Page:

University of California - San Francisco. "Drug strategy blocks leading driver of cancer." ScienceDaily. ScienceDaily, 20 November 2013. <www.sciencedaily.com/releases/2013/11/131120133735.htm>.
University of California - San Francisco. (2013, November 20). Drug strategy blocks leading driver of cancer. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2013/11/131120133735.htm
University of California - San Francisco. "Drug strategy blocks leading driver of cancer." ScienceDaily. www.sciencedaily.com/releases/2013/11/131120133735.htm (accessed September 1, 2014).

Share This




More Health & Medicine News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Liberia Continues Fight Against Ebola

Liberia Continues Fight Against Ebola

AFP (Aug. 30, 2014) Authorities in Liberia try to stem the spread of the Ebola epidemic by raising awareness and setting up sanitation units for people to wash their hands. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
California Passes 'yes-Means-Yes' Campus Sexual Assault Bill

California Passes 'yes-Means-Yes' Campus Sexual Assault Bill

Reuters - US Online Video (Aug. 30, 2014) California lawmakers pass a bill requiring universities to adopt "affirmative consent" language in their definitions of consensual sex, part of a nationwide drive to curb sexual assault on campuses. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
New Drug Could Reduce Cardiovascular Deaths

New Drug Could Reduce Cardiovascular Deaths

Newsy (Aug. 30, 2014) The new drug from Novartis could reduce cardiovascular deaths by 20 percent compared to other similar drugs. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins