Featured Research

from universities, journals, and other organizations

New brain cells for Parkinson's and Huntington's patients? Attractants prevent nerve cell migration

Date:
November 21, 2013
Source:
Universität Bonn
Summary:
Medical researchers have been working toward implanting nerve precursor cells in the brains of patients with Parkinson’s and Huntington’s diseases. It was hoped that these cells would assume the function of the cells that have died off. However, the implanted nerve cells frequently did not migrate as hoped, rather they hardly move from the site. Scientists have now discovered an important cause of this: Attractants secreted by the precursor cells prevent the maturing nerve cells from migrating into the brain.

A vision is to implant nerve precursor cells in the diseased brains of patients with Parkinson's and Huntington's diseases, whereby these cells are to assume the function of the cells that have died off. However, the implanted nerve cells frequently do not migrate as hoped, rather they hardly move from the site. Scientists at the Institute for Reconstructive Neurobiology at Bonn University have now discovered an important cause of this: Attractants secreted by the precursor cells prevent the maturing nerve cells from migrating into the brain. The results are presented in the journal Nature Neuroscience.

Related Articles


One approach for treating patients with Parkinson's or Huntington's disease is to replace defective brain cells with fresh cells. To do this, immature precursor cells from neurons are implanted into the diseased brains; these cells are to then mature on-site and take over the function of the defective cells. "However, it has been shown again and again that the nerve cells generated by the transplant barely migrate into the brain but remain largely confined to the implant site," says Prof. Dr. Oliver Brüstle, Director of the Institute for Reconstructive Neurobiology at Bonn University. Scientists have believed for a long time that this effect is associated with the fact that in the mature brain, there are unfavorable conditions for the uptake of additional nerve cells.

Immature and more mature nerve cells attract each other like magnets

The researchers from the Institute for Reconstructive Neurobiology of Bonn University have now discovered a fully unexpected mechanism to which the deficient migratory behavior of the graft-derived neurons can be attributed. The implanted cells mature at different rates and thus there is a mixture of the two stages. "Like magnets, the precursor cells which are still largely immature attract the nerve cells which have already matured further, which is why there is a sort of agglomeration," says lead author Dr. Julia Ladewig, who was recently awarded a research prize of 1.25 million Euro by the North Rhine-Westphalian Stem Cell Network, which is supported by State Ministry of Science and Research.

The cause of the attractive force which has remained hidden to date involves chemical attractants which are secreted by the precursor cells. "In this way, the nerve precursor cells prevent the mature brain cells from penetrating further into the tissue," says Dr. Philipp Koch, who performed the primary work for the study as an additional lead author, together with Dr. Ladewig.

The scientists had initially observed that, the more precursor cells contained in the transplant, the worse the migration of nerve cells is. In a second step, the researchers from the Institute for Reconstructive Neurobiology at Bonn University were able to decode and inactivate the attractants responsible for the agglomeration of mature and immature neurons. When the scientists deactivated the receptor tyrosine kinase ligands FGF2 and VEGF with inhibitors, mature nerve cells migrated better into the animal brains and dispersed over much larger areas.

Promising universal approach for transplants

"This is a promising new approach to solve an old problem in neurotransplantation," Prof. Brüstle summarizes. Through the inhibition of attractants, the migration of implanted nerve precursor cells into the brain can be significantly improved. As the researchers have shown in various models with precursor cells from animals and humans, the mechanism is a fundamental principle which also functions across species. "However, more research is still needed to transfer the principle into clinical application," says Prof. Brüstle.


Story Source:

The above story is based on materials provided by Universität Bonn. Note: Materials may be edited for content and length.


Journal Reference:

  1. Julia Ladewig, Philipp Koch, Oliver Brüstle. Auto-attraction of neural precursors and their neuronal progeny impairs neuronal migration. Nature Neuroscience, 2013; DOI: 10.1038/nn.3583

Cite This Page:

Universität Bonn. "New brain cells for Parkinson's and Huntington's patients? Attractants prevent nerve cell migration." ScienceDaily. ScienceDaily, 21 November 2013. <www.sciencedaily.com/releases/2013/11/131121091316.htm>.
Universität Bonn. (2013, November 21). New brain cells for Parkinson's and Huntington's patients? Attractants prevent nerve cell migration. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2013/11/131121091316.htm
Universität Bonn. "New brain cells for Parkinson's and Huntington's patients? Attractants prevent nerve cell migration." ScienceDaily. www.sciencedaily.com/releases/2013/11/131121091316.htm (accessed October 31, 2014).

Share This



More Health & Medicine News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) — The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) — The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) — New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) — Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins