Featured Research

from universities, journals, and other organizations

Ultrasound, nanoparticles may help diabetics avoid the needle

Date:
November 21, 2013
Source:
North Carolina State University
Summary:
A new nanotechnology-based technique for regulating blood sugar in diabetics may give patients the ability to release insulin painlessly using a small ultrasound device, allowing them to go days between injections -- rather than using needles to give themselves multiple insulin injections each day.

New technique allows diabetics to control insulin release with an injectable nano-network and portable ultrasound device.
Credit: University of North Carolina at Chapel Hill

A new nanotechnology-based technique for regulating blood sugar in diabetics may give patients the ability to release insulin painlessly using a small ultrasound device, allowing them to go days between injections -- rather than using needles to give themselves multiple insulin injections each day. The technique was developed by researchers at North Carolina State University and the University of North Carolina at Chapel Hill.

"This is hopefully a big step toward giving diabetics a more painless method of maintaining healthy blood sugar levels," says Dr. Zhen Gu, senior author of a paper on the research and an assistant professor in the joint biomedical engineering program at NC State and UNC-Chapel Hill.

The technique involves injecting biocompatible and biodegradable nanoparticles into a patient's skin. The nanoparticles are made out of poly(lactic-co-glycolic) acid (PLGA) and are filled with insulin.

Each of the PLGA nanoparticles is given either a positively charged coating made of chitosan (a biocompatible material normally found in shrimp shells), or a negatively charged coating made of alginate (a biocompatible material normally found in seaweed). When the solution of coated nanoparticles is mixed together, the positively and negatively charged coatings are attracted to each other by electrostatic force to form a "nano-network." Once injected into the subcutaneous layer of the skin, that nano-network holds the nanoparticles together and prevents them from dispersing throughout the body.

The coated PLGA nanoparticles are also porous. Once in the body, the insulin begins to diffuse from the nanoparticles. But the bulk of the insulin doesn't stray far -- it is suspended in a de facto reservoir in the subcutaneous layer of the skin by the electrostatic force of the nano-network. This essentially creates a dose of insulin that is simply waiting to be delivered into the bloodstream.

When a patient has type 1 or advanced type 2 diabetes, his or her body needs additional insulin, a hormone that transports glucose -- or blood sugar -- from the bloodstream into the body's cells. These diabetes patients must inject insulin as needed to ensure their blood sugar levels are in the "normal" range. However, these injections can be painful.

Using the new technology developed by Gu's team, a diabetes patient doesn't have to inject a dose of insulin -- it's already there. Instead, patients can use a small, hand-held device to apply focused ultrasound waves to the site of the nano-network, painlessly releasing the insulin from its de facto reservoir into the bloodstream.

The researchers believe the technique works because the ultrasound waves excite microscopic gas bubbles in the tissue, temporarily disrupting nano-network in the subcutaneous layer of the skin. That disruption pushes the nanoparticles apart, relaxing the electrostatic force being exerted on the insulin in the reservoir. This allows the insulin to begin entering the bloodstream -- a process hastened by the effect of the ultrasound waves pushing on the insulin.

"We know this technique works, and we think this is how it works, but we are still trying to determine the precise details," says Dr. Yun Jing, an assistant professor of mechanical engineering at NC State and co-corresponding author of the paper.

When the ultrasound is removed, the electrostatic force reasserts itself and pulls the nanoparticles in the nano-network back together. The nanoparticles then diffuse more insulin, refilling the reservoir.

"We've done proof-of-concept testing in laboratory mice with type 1 diabetes," Gu says. "We found that this technique achieves a quick release of insulin into the bloodstream, and that the nano-networks contain enough insulin to regulate blood glucose levels for up to 10 days."

"When the insulin runs out, you have to inject a new nano-network," says Jin Di, lead author of the paper and a Ph.D. student in Gu's research lab. "The previous nano-network is dissolved and fully absorbed into the body in a few weeks."

"This advance will certainly give millions of people with diabetes worldwide hope that better days are ahead," says Dr. John Buse, director of UNC-Chapel Hill's Diabetes Care Center and deputy director of UNC-Chapel Hill's NIH Clinical and Translational Sciences Award. "We must work to translate these exciting studies in the lab to clinical practice."


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jin Di, Jennifer Price, Xiao Gu, Xiaoning Jiang, Yun Jing, Zhen Gu. Ultrasound-Triggered Regulation of Blood Glucose Levels Using Injectable Nano-Network. Advanced Healthcare Materials, 2013; DOI: 10.1002/adhm.201300490

Cite This Page:

North Carolina State University. "Ultrasound, nanoparticles may help diabetics avoid the needle." ScienceDaily. ScienceDaily, 21 November 2013. <www.sciencedaily.com/releases/2013/11/131121105155.htm>.
North Carolina State University. (2013, November 21). Ultrasound, nanoparticles may help diabetics avoid the needle. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2013/11/131121105155.htm
North Carolina State University. "Ultrasound, nanoparticles may help diabetics avoid the needle." ScienceDaily. www.sciencedaily.com/releases/2013/11/131121105155.htm (accessed September 2, 2014).

Share This




More Health & Medicine News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Snack Attack: Study Says Action Movies Make You Snack More

Snack Attack: Study Says Action Movies Make You Snack More

Newsy (Sep. 2, 2014) You're more likely to gain weight while watching action flicks than you are watching other types of programming, says a new study published in JAMA. Video provided by Newsy
Powered by NewsLook.com
U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

Newsy (Sep. 2, 2014) The U.N. says the problem is two-fold — quarantine zones and travel restrictions are limiting the movement of both people and food. Video provided by Newsy
Powered by NewsLook.com
Doctors Fear They're Losing Battle Against Ebola

Doctors Fear They're Losing Battle Against Ebola

AP (Sep. 2, 2014) As a third American missionary is confirmed to have contracted Ebola in Liberia, doctors on the ground in West Africa fear they're losing the battle against the outbreak. (Sept. 2) Video provided by AP
Powered by NewsLook.com
Tech Giants Bet on 3D Headsets for Gaming, Healthcare

Tech Giants Bet on 3D Headsets for Gaming, Healthcare

AFP (Sep. 2, 2014) When Facebook acquired the virtual reality hardware developer Oculus VR in March for $2 billion, CEO Mark Zuckerberg hailed the firm's technology as "a new communication platform." Duration: 02:24 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins