Featured Research

from universities, journals, and other organizations

Flashes of brilliance: Roots of superfluorescent bursts from quantum wells discovered

Date:
November 25, 2013
Source:
Rice University
Summary:
Spontaneous bursts of coherent light from solid-state materials shed new light on how particles interact and may lead to ultrahigh-speed optoelectronic devices for telecommunications.

Rice University scientists detected superfluorescent bursts from a solid-state stack of quantum wells without a magnetic field. The discovery could lead to ultrahigh-speed optoelectronic devices for telecommunications.
Credit: Kono Laboratory/Rice University

Spontaneous bursts of light from a solid block illuminate the unusual way interacting quantum particles behave when they are driven far from equilibrium. The discovery by Rice University scientists of a way to trigger these flashes may lead to new telecommunications equipment and other devices that transmit signals at picosecond speeds.

The Rice University lab of Junichiro Kono found the flashes, which last trillionths of a second, change color as they pulse from within a solid-state block. The researchers said the phenomenon can be understood as a combination of two previously known many-body concepts: superfluorescence, as seen in atomic and molecular systems, and Fermi-edge singularities, a process known to occur in metals.

The team previously reported the first observation of superfluorescence in a solid-state system by strongly exciting semiconductor quantum wells in high magnetic fields. The new process -- Fermi-edge superfluorescence -- does not require them to use powerful magnets. That opens up the possibility of making compact semiconductor devices to produce picosecond pulses of light.

The results by Rice, Florida State University and Texas A&M University researchers were reported this month in Nature's online journal, Scientific Reports.

The semiconducting quantum wells at the center of the experiment contain particles -- in this case, a dense collection of electrons and holes -- and confine them to wiggle only within the two dimensions allowed by the tiny, stacked wells, where they are subject to strong Coulomb interactions.

Previous experiments by Rice and Florida State showed the ability to create superfluorescent bursts from a stack of quantum wells excited by a laser in extreme cold and under the influence of a strong magnetic field, both of which further quenched the electrons' motions and made an atom-like system. The basic features were essentially the same as those known for superfluorescence in atomic systems.

That was a first, but mysteries remained, especially in results obtained at low or zero magnetic fields. Kono said the team didn't understand at the time why the wavelength of the burst changed over its 100-picosecond span. Now they do. The team included co-lead authors Timothy Noe, a Rice postdoctoral researcher, and Ji-Hee Kim, a former Rice postdoctoral researcher and now a research professor at Sungkyunkwan University in the Republic of Korea.

In the new results, the researchers not only described the mechanism by which the light's wavelength evolves during the event (as a Fermi-edge singularity), but also managed to record it without having to travel to the National High Magnetic Field Laboratory at Florida State.

Kono said superfluorescence is a well-known many-body, or cooperative, phenomenon in atomic physics. Many-body theory gives physicists a way to understand how large numbers of interacting particles like molecules, atoms and electrons behave collectively. Superfluorescence is one example of how atoms under tight controls collaborate when triggered by an external source of energy. However, electrons and holes in semiconductors are charged particles, so they interact more strongly than atoms or molecules do.

The quantum well, as before, consisted of stacked blocks of an indium gallium arsenide compound separated by barriers of gallium arsenide. "It's a unique, solid-state environment where many-body effects completely dominate the dynamics of the system," Kono said.

"When a strong magnetic field is applied, electrons and holes are fully quantized -- that is, constrained in their range of motion -- just like electrons in atoms," he said. "So the essential physics in the presence of a high magnetic field is quite similar to that in atomic gases. But as we decrease and eventually eliminate the magnetic field, we're entering a regime atomic physics cannot access, where continua of electronic states, or bands, exist."

The Kono team's goal was to keep the particles as dense as possible at liquid helium temperatures (about -450 degrees Fahrenheit) so that their quantum states were obvious, or "quantum degenerate," which happens when the so-called Fermi energy is much larger than the thermal energy. When pumped by a strong laser, these quantum degenerate particles gathered energy and released it as light at the Fermi edge: the energy level of the most energetic particles in the system. As the electrons and holes combined to release photons, the edge shifted to lower-energy particles and triggered more reactions until the sequence played out.

The researchers found the emitted light shifted toward the higher red wavelengths as the burst progressed.

"What's cool about this is that we have a material, we excite it with a 150-femtosecond pulse, wait for 100 picoseconds, and all of a sudden a picosecond pulse comes out. It's a long delay," Kono said. "This may lead to a new method for producing picosecond pulses from a solid. We saw something essentially the same previously, but it required high magnetic fields, so there was no practical application. But now the present work demonstrates that we don't need a magnet."

Co-authors are Stephen McGill, an associate scholar and scientist with the National High Magnetic Field Laboratory at Florida State University, and researchers Yongrui Wang and Aleksander Wójcik and Professor Alexey Belyanin of Texas A&M University.

The National Science Foundation and the state of Florida supported the research.


Story Source:

The above story is based on materials provided by Rice University. The original article was written by Mike Williams. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ji-Hee Kim, G. Timothy Noe II, Stephen A. McGill, Yongrui Wang, Aleksander K. Wójcik, Alexey A. Belyanin, Junichiro Kono. Fermi-edge superfluorescence from a quantum-degenerate electron-hole gas. Scientific Reports, 2013; 3 DOI: 10.1038/srep03283

Cite This Page:

Rice University. "Flashes of brilliance: Roots of superfluorescent bursts from quantum wells discovered." ScienceDaily. ScienceDaily, 25 November 2013. <www.sciencedaily.com/releases/2013/11/131125164733.htm>.
Rice University. (2013, November 25). Flashes of brilliance: Roots of superfluorescent bursts from quantum wells discovered. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2013/11/131125164733.htm
Rice University. "Flashes of brilliance: Roots of superfluorescent bursts from quantum wells discovered." ScienceDaily. www.sciencedaily.com/releases/2013/11/131125164733.htm (accessed July 22, 2014).

Share This




More Matter & Energy News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) — The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) — The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) — President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) — Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins