Featured Research

from universities, journals, and other organizations

Squeezing transistors really hard generates energy savings

Date:
December 6, 2013
Source:
University of Twente
Summary:
If silicon is squeezed, this affects the freedom of movement of the electrons in this material. This can promote or restrict the flow of electrical current. Compare it to a garden hose. When you stand on it, less water comes out. But strangely enough, the flow of electrons in silicon actually increases when the material is compressed.

The electrical current passing through a transistor is conducted by a slice of silicon. In the new transistor, this is sandwiched between layers of piezoelectric material. As this material (shown in red) expands, the silicon (shown in blue) is compressed.
Credit: Image courtesy of University of Twente

If silicon is squeezed, this affects the freedom of movement of the electrons in this material. This can promote or restrict the flow of electrical current. Compare it to a garden hose. When you stand on it, less water comes out. But strangely enough, the flow of electrons in silicon actually increases when the material is compressed.

Only pinch when necessary

In modern microchips, every single transistor is continuously exposed to enormous pressures of up to 10,000 atmospheres. This pressure is sealed in during the manufacturing process, by surrounding the transistors with compressive materials. While this boosts the chip's processing speed, the leakage current also increases. The use of piezoelectric material means that the transistors are only put under pressure when this is necessary. This can generate considerable savings in terms of energy consumption.

Limit smashed

The underlying concept was originally developed by Ray Hueting. In order to turn this into reality, Tom van Hemert had to find a way of linking theories of mechanical deformation with quantum-mechanical formulas describing the electrical behaviour of transistors. The calculations indicate that "garden hose transistors" are much better than conventional transistors at switching from off to on. According to the classical theoretical limit, a charge of at least 60 millivolts is needed to make a transistor conduct ten times more electricity. The piezoelectric transistor uses just 50 millivolts. As a result, either the leakage current can be reduced, or more current can be carried in the on-state. Either way, this will boost the performance of modern microchips, while -- importantly -- cutting their energy consumption.

The results of this research were recently published in the journal, Transactions on Electron Devices.


Story Source:

The above story is based on materials provided by University of Twente. Note: Materials may be edited for content and length.


Cite This Page:

University of Twente. "Squeezing transistors really hard generates energy savings." ScienceDaily. ScienceDaily, 6 December 2013. <www.sciencedaily.com/releases/2013/12/131206091423.htm>.
University of Twente. (2013, December 6). Squeezing transistors really hard generates energy savings. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2013/12/131206091423.htm
University of Twente. "Squeezing transistors really hard generates energy savings." ScienceDaily. www.sciencedaily.com/releases/2013/12/131206091423.htm (accessed September 30, 2014).

Share This



More Matter & Energy News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Do Video Games Trump Brain Training For Cognitive Boosts?

Do Video Games Trump Brain Training For Cognitive Boosts?

Newsy (Sep. 29, 2014) More and more studies are showing positive benefits to playing video games, but the jury is still out on brain training programs. Video provided by Newsy
Powered by NewsLook.com
CERN Celebrates 60 Years of Science

CERN Celebrates 60 Years of Science

Reuters - Business Video Online (Sep. 29, 2014) CERN, the European Organisation for Nuclear Research, celebrates 60 years of bringing nations together through science. As Joanna Partridge reports from inside the famous science centre it's also planning to turn the Large Hadron Collider particle accelerator back on after an upgrade. Video provided by Reuters
Powered by NewsLook.com
This 'Invisibility Cloak' Is Simpler Than Most

This 'Invisibility Cloak' Is Simpler Than Most

Newsy (Sep. 28, 2014) Researchers from the University of Rochester have created a type of invisibility cloak with simple focal lenses. Video provided by Newsy
Powered by NewsLook.com
New Corvette Can Secretly Record Convos And Get You Arrested

New Corvette Can Secretly Record Convos And Get You Arrested

Newsy (Sep. 28, 2014) The 2015 Corvette features valet mode – which allows the owner to secretly record audio and video – but in many states that practice is illegal. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins