Featured Research

from universities, journals, and other organizations

Free-flowing traffic on the information highway

Date:
December 16, 2013
Source:
Fraunhofer-Gesellschaft
Summary:
Our communication networks have to process constantly increasing volumes of data, pushing them to the limits of their capacity. An analyzer makes it possible to test new, efficient transmission formats quickly and with the minimum of fuss.

At a rate of 70 billion sample values a second, Fraunhofer HHI’s arbitrary waveform generator tests new transmission formats quickly and with the minimum of fuss.
Credit: © Fraunhofer HHI

Our communication networks have to process constantly increasing volumes of data, pushing them to the limits of their capacity. An analyzer makes it possible to test new, efficient transmission formats quickly and with the minimum of fuss.

Our information highways are becoming increasingly busy places: according to the German Federal Network Agency, in 2012 Germans sent 4.3 billion gigabytes of data through the virtual transport network via broadband. In addition, around 140 million gigabytes were transmitted over cellular net- works. At the same time, the requirements for transmission quality and speed have been growing. Primarily as a result of data-intensive applications such as multimedia content, today's communication networks are sometimes pushed to the limits of their capacity -- and there is a real danger of traffic jams on the information highway. In future, only an improved infrastructure will suffice to quickly and reliably transport the growing masses of bits and bytes. However, as with conventional transportation, simply building new "roads" is not a realistic option with these virtual networks. "The available radio frequency spectrum is already largely exhausted in many places. This means that we have to use the existing frequencies more efficiently," explains Dr. Klaus-Dieter Langer from the Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute, HHI in Berlin. The same goes for the landline network: exploiting existing capacities with state-of-the-art technology is often cheaper than laying new cables.

Consequently, Langer and his team are working on transmitting more information in less bandwidth. To achieve this goal, they are testing out new modulation formats for fiber optic transmission technology. These are methods for accommodating as many bits as possible in a frequency unit. The simplest modulation format consists of a sequence of the values 0 and 1, which is achieved by switching the transmission signal on and off. The researchers' concepts may involve adding several intermediate values, for instance, in order to obtain a higher bit rate. "Although complex modulation formats often seem very promising in theory, they can turn out to have unexpected effects when we test them," says Langer. In order to test the practicability of new transmission techniques, researchers usually use signal generators as found in circuit design. More sophisticated versions -- arbitrary waveform generators or AWGs for short -- are capable of creating random sequences of signals. Such a tool can make life much easier for researchers and developers. "Otherwise, we would have to construct specific circuits for the required signals. And that would be far too time- consuming, particularly with complicated signal forms," explains Langer.

World's fastest analyzer for testing transmission techniques

Fraunhofer HHI in Berlin has developed what is currently the fastest AWG in the world. At sample rates of 70 GSa/s -- that is, 70 billion sample values a second -- it is possible to quickly and easily simulate any kind of scenario with very high data rates and signal frequencies. The AWG is based on two digital-to-analog converters with 35 GSa/s each and the highest bandwidth available on the market. The predecessor to today's analyzer was originally developed by HHI researchers for their own use, but it aroused such interest that the technology is now also available to the institute's customers. As well as testing new modulation formats, the high-end AWG can also be used to optimize existing transmission methods: "For example, we can deliberately impair the signal to find out how tolerant the transmission is to signal fluctuations and to identify any points of weakness," says Langer.

The findings help to improve transmission techniques for existing broadband and radio networks, making us better able to cope with the constantly growing flood of data. "In addition to speed, energy efficiency is also an important factor here -- just think of big data centers such as the ones Google operates," points out Langer. However, demand for highly efficient transmission methods is also increasing among companies looking to further develop high-tech devices -- such methods are the key to faster computers and smaller, more powerful devices.


Story Source:

The above story is based on materials provided by Fraunhofer-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Fraunhofer-Gesellschaft. "Free-flowing traffic on the information highway." ScienceDaily. ScienceDaily, 16 December 2013. <www.sciencedaily.com/releases/2013/12/131216080324.htm>.
Fraunhofer-Gesellschaft. (2013, December 16). Free-flowing traffic on the information highway. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2013/12/131216080324.htm
Fraunhofer-Gesellschaft. "Free-flowing traffic on the information highway." ScienceDaily. www.sciencedaily.com/releases/2013/12/131216080324.htm (accessed October 22, 2014).

Share This



More Computers & Math News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) — If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) — Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) — Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins