Featured Research

from universities, journals, and other organizations

New magnetic behaviour in nanoparticles could lead to even smaller digital memories

Date:
December 19, 2013
Source:
Universitat Autònoma de Barcelona
Summary:
Researchers have created a new behavior in magnetic core/shell nanoparticles. It could lead to the creation of even smaller and higher capacity digital memories.

Schematic representation of the antiferromagnetic coupling between a magnetic Fe3O4 soft core and a magnetic Mn3O4 hard shell. The image of an electronic high-resolution transmission microscope, superimposed on a map of electronic energy loss spectroscopy (EELS), reveals the high quality of the interface with a coherent increase between the two phases.
Credit: Image courtesy of Universitat Autònoma de Barcelona

Researchers from the Universitat Autònoma de Barcelona (UAB) and the Institut Catala de Nanociencia i Nanotecnologia (ICN2) have created a new behaviour in magnetic core/shell nanoparticles. It could lead to the creation of even smaller and higher capacity digital memories.

Electronic devices such as mobile phones and tablets spur on a scientific race to find smaller and smaller information processing and storage elements. One of the challenges in this race is to reproduce certain magnetic effects at nanometre scale.

An international collaboration of scientists led by researchers from the Universitat Autònoma de Barcelona Department of Physics and the Institut Catala de Nanociencia i Nanotecnologia, and with the participation of the Universitat de Barcelona, has been able to reproduce in particles measuring 10 to 20 nanometres a magnetic phenomenon of great importance in magnetic devices: the antiferromagnetic coupling between layers. 

This phenomenon appears when coupling layers of materials with different magnetic properties, which allows controlling the magnetic behaviour of the whole device. This property has very important technological applications. For example, it forms an important part of data reading systems found in hard drives and in the MRAM memories of computers and mobile devices. 

Researchers have managed for the first time to reproduce this phenomenon in nanoscopic materials, measuring a mere few tens of atoms in diameter. They managed to do this by using iron-oxide particles surrounded by a thin layer of manganese-oxide and vice versa: manganese-oxide particles covered by a layer of iron-oxide. The discovery provides an unprecedented control of the magnetic behaviour of nanoparticles, since it permits controlling and easily adjusting their properties without having to manipulate their shape or composition, solely by controlling the temperature and the magnetic fields surrounding it.

“We've been able to reproduce a magnetic behaviour not previously observed in nanoparticles, and this paves the way for miniaturisation up to limits which seemed impossible for magnetic storage and other more sophisticated applications such as spin filters, magnetic codifiers and multi-level recording”, explain Josep Nogués, ICREA research professor, and Maria Dolors Baró, professor of Applied Physics.


Story Source:

The above story is based on materials provided by Universitat Autònoma de Barcelona. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Estrader, A. López-Ortega, S. Estradé, I. V. Golosovsky, G. Salazar-Alvarez, M. Vasilakaki, K. N. Trohidou, M. Varela, D. C. Stanley, M. Sinko, M. J. Pechan, D. J. Keavney, F. Peiró, S. Suriñach, M. D. Baró, J. Nogués. Robust antiferromagnetic coupling in hard-soft bi-magnetic core/shell nanoparticles. Nature Communications, 2013; 4 DOI: 10.1038/ncomms3960

Cite This Page:

Universitat Autònoma de Barcelona. "New magnetic behaviour in nanoparticles could lead to even smaller digital memories." ScienceDaily. ScienceDaily, 19 December 2013. <www.sciencedaily.com/releases/2013/12/131219093433.htm>.
Universitat Autònoma de Barcelona. (2013, December 19). New magnetic behaviour in nanoparticles could lead to even smaller digital memories. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2013/12/131219093433.htm
Universitat Autònoma de Barcelona. "New magnetic behaviour in nanoparticles could lead to even smaller digital memories." ScienceDaily. www.sciencedaily.com/releases/2013/12/131219093433.htm (accessed September 30, 2014).

Share This



More Matter & Energy News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Do Video Games Trump Brain Training For Cognitive Boosts?

Do Video Games Trump Brain Training For Cognitive Boosts?

Newsy (Sep. 29, 2014) — More and more studies are showing positive benefits to playing video games, but the jury is still out on brain training programs. Video provided by Newsy
Powered by NewsLook.com
CERN Celebrates 60 Years of Science

CERN Celebrates 60 Years of Science

Reuters - Business Video Online (Sep. 29, 2014) — CERN, the European Organisation for Nuclear Research, celebrates 60 years of bringing nations together through science. As Joanna Partridge reports from inside the famous science centre it's also planning to turn the Large Hadron Collider particle accelerator back on after an upgrade. Video provided by Reuters
Powered by NewsLook.com
This 'Invisibility Cloak' Is Simpler Than Most

This 'Invisibility Cloak' Is Simpler Than Most

Newsy (Sep. 28, 2014) — Researchers from the University of Rochester have created a type of invisibility cloak with simple focal lenses. Video provided by Newsy
Powered by NewsLook.com
New Corvette Can Secretly Record Convos And Get You Arrested

New Corvette Can Secretly Record Convos And Get You Arrested

Newsy (Sep. 28, 2014) — The 2015 Corvette features valet mode – which allows the owner to secretly record audio and video – but in many states that practice is illegal. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins