Featured Research

from universities, journals, and other organizations

Graphene-based field-effect transistor with semiconducting nature opens up practical use in electronics

Date:
December 19, 2013
Source:
Ulsan National Institute of Science and Technology (UNIST)
Summary:
Scientists have announced a method for the mass production of boron/nitrogen co-doped graphene nanoplatelets, which led to the fabrication of a graphene-based field-effect transistor (FET) with semiconducting nature. This opens up opportunities for practical use in electronic devices.

A schematic representation for the formation of BCN-graphene via solvothermal reaction between carbon tetrachloride (CCl4) boron tribromide (BBr3) and nitrogen (N2) in the presence of potassium (K). Photograph is of the autoclave after the reaction, showing the formation of BCN-graphene (black) and potassium halide (KCl and KBr, white).

UNIST announced a method for the mass production of boron/nitrogen co-doped graphene nanoplatelets, which led to the fabrication of a graphene-based field-effect transistor (FET) with semiconducting nature. This opens up opportunities for practical use in electronic devices.

A schematic representation for the formation of BCN-graphene via solvothermal reaction between carbon tetrachloride (CCl4) boron tribromide (BBr3) and nitrogen (N2) in the presence of potassium (K). Photograph is of the autoclave after the reaction, showing the formation of BCN-graphene (black) and potassium halide (KCl and KBr, white).

The Ulsan National Institute of Science and Technology (UNIST) research team led by Prof. Jong-Beom Baek have discovered an efficient method for the mass production of boron/nitrogen co-doped graphene nanoplatelets (BCN-graphene) via a simple solvothermal reaction of BBr3/CCl4/N2 in the presence of potassium. This work was published in Angewandte Chemie International Edition as a VIP ("Very Important Paper").

Since graphene was experimentally discovered in 2004, it has been the focus of vigorous applied research due to its outstanding properties such as high specific surface area, good thermal and electrical conductivities, and many more properties.

However, its Achilles heel is a vanishing band-gap for semiconductor application. As a result, it is not suitable for logic applications, because devices cannot be switched off. Therefore, graphene must be modified to produce a band-gap, if it is to be used in electronic devices.

Various methods of making graphene-based field effect transistors (FETs) have been exploited, including doping graphene tailoring graphene-like a nanoribbon, and using boron nitride as a support.

Among the methods of controlling the band-gap of graphene, doping methods show the most promise in terms of industrial scale feasibility.

Although world leading researchers have tried to add boron into graphitic framework to open its band-gap for semiconductor applications, there has not been any notable success yet. Since the atomic size of boron (85 pm) is larger than that of carbon (77 pm), it is difficult to accommodate boron into the graphitic network structure.

A new synthetic protocol developed by a research team from UNIST, a leading Korean university, has revealed that boron/nitrogen co-doping is only feasible when carbon tetrachloride (CCl4) is treated with boron tribromide (BBr3) and nitrogen (N2) gas. In order to help boron-doping into graphene structure, the research team used nitrogen (70 pm), which is a bit smaller than carbon and boron.

The idea was very simple, but the result was surprising. Pairing two nitrogen atoms and two boron atoms can compensate for the atomic size mismatch. Thus, boron and nitrogen pairs can be easily introduced into the graphitic network. The resultant BCN-graphene generates a band-gap for FETs.

"Although the performance of the FET is not in the ranges of commercial silicon-based semiconductors, this initiative work should be the proof of a new concept and a great leap forward for studying graphene with band-gap opening," said Prof. Jong-Beom Baek.

"I believe this work is one of the biggest advancements in considering the viability of a simple synthetic approach," said Ph.D. candidate Sun-Min Jung, the first author of this article.

Prof. Baek explains the next step: "Now, the remaining challenge is fine-tuning a band-gap to improve the on/off current ratio for real device applications."


Story Source:

The above story is based on materials provided by Ulsan National Institute of Science and Technology (UNIST). Note: Materials may be edited for content and length.


Journal Reference:

  1. Sun-Min Jung, Eun-Kwang Lee, Min Choi, Dongbin Shin, In-Yup Jeon, Jeong-Min Seo, Hu-Young Jeong, Noejung Park, Joon Hak Oh, and Jong-Beom Baek. "Direct" Synthesis of Boron/Nitrogen Co-Doped Graphene through the Solvothermal Reaction of Carbon Tetrachloride, Boron Tribromide, and Nitrogen. Angewandte Chemie International Edition, (in press)

Cite This Page:

Ulsan National Institute of Science and Technology (UNIST). "Graphene-based field-effect transistor with semiconducting nature opens up practical use in electronics." ScienceDaily. ScienceDaily, 19 December 2013. <www.sciencedaily.com/releases/2013/12/131219154409.htm>.
Ulsan National Institute of Science and Technology (UNIST). (2013, December 19). Graphene-based field-effect transistor with semiconducting nature opens up practical use in electronics. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2013/12/131219154409.htm
Ulsan National Institute of Science and Technology (UNIST). "Graphene-based field-effect transistor with semiconducting nature opens up practical use in electronics." ScienceDaily. www.sciencedaily.com/releases/2013/12/131219154409.htm (accessed September 16, 2014).

Share This



More Matter & Energy News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) — Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com
Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Reuters - US Online Video (Sep. 15, 2014) — New York officials unveil subway tunnels that were refurbished after Superstorm Sandy. Nathan Frandino reports. Video provided by Reuters
Powered by NewsLook.com
Frustration As Drone Industry Outpaces Regulation In U.S.

Frustration As Drone Industry Outpaces Regulation In U.S.

Newsy (Sep. 14, 2014) — U.S. firms worry they’re falling behind in the marketplace as the FAA considers how to regulate commercial drones. Video provided by Newsy
Powered by NewsLook.com
Smart Gun Innovators Fear Backlash From Gun Rights Advocates

Smart Gun Innovators Fear Backlash From Gun Rights Advocates

Newsy (Sep. 14, 2014) — Winners of a contest for smart gun design are asking not to be named after others in the industry received threats for marketing similar products. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins