Featured Research

from universities, journals, and other organizations

Amino acid's increase suspected in diabetes

Date:
December 19, 2013
Source:
University of Texas Health Science Center at San Antonio
Summary:
Scientists conducted research that suggests the amino acid tyrosine has a direct effect in diabetes.

Alfred Fisher, M.D., Ph.D., of the Barshop Institute for Longevity and Aging Studies at The University of Texas Health Science Center at San Antonio, led research suggesting that an amino acid, tyrosine, has a direct effect in diabetes.
Credit: UT Health Science Center at San Antonio

Elevated levels of an amino acid, tyrosine, alter development and longevity in animals and may contribute to the development of diabetes in people, new research from the UT Health Science Center at San Antonio indicates. This line of study could potentially lead to a novel way to prevent or treat the disease. The research is reported in PLOS Genetics, a journal of the Public Library of Science.

Evidence of a direct effect in diabetes

Tyrosine is increased in the blood of people who are obese or diabetic, said study senior author Alfred Fisher, M.D., Ph.D., of the Barshop Institute for Longevity and Aging Studies at the UT Health Science Center. Among people who are obese, those at the highest risk of developing diabetes tend to have higher tyrosine levels. "It was unknown whether this was simply a marker of diabetes risk or could be playing a direct role in the disease," Dr. Fisher said. "Our work suggests that tyrosine has a direct effect."

Dr. Fisher is a physician scientist with the Barshop Institute's Center for Healthy Aging and the Geriatric Research, Education and Clinical Center of the South Texas Veterans Health Care System. He has studied tyrosine's effect on insulin signaling in an animal model called C. elegans (roundworms) since 2005. The observation that tyrosine was elevated in human diabetics further spurred the research. Now he is ready to take research insights back into people.

Concept to be tested in humans

"This will be tested in small human clinical trials," Dr. Fisher said. "Our team will augment tyrosine levels in study participants for a short period and observe whether this changes the ability of the body to respond to insulin, which is a key hormone involved in controlling blood sugar levels. This will not be detrimental to participants, as the increase will be transient and well below the level of what is clinically relevant."

As a postdoctoral fellow at the University of California, San Francisco, Dr. Fisher found that increasing the levels of tyrosine in roundworms promoted their longevity. Worms with mutations of certain genes lived 10 percent to 20 percent longer. One combination of genetic mutations produced an almost 60 percent increase in life span.

Same inhibition, different effects

"In both humans and worms, the effect is due to an inhibition of insulin signaling," Dr. Fisher said. "Interfering with this pathway produces longevity in worms, whereas in people it leads to insulin resistance and an elevated risk of developing diabetes."

Tyrosine has been studied for decades, but few if any research groups have made the connection between tyrosine and diabetes.

New thinking about amino acids' roles

"The key concept that comes out of our latest paper is, rather than amino acids being only building blocks in our bodies, they are detected and produce changes in physiology, including potentially undesirable ones such as diabetes in humans," Dr. Fisher said.


Story Source:

The above story is based on materials provided by University of Texas Health Science Center at San Antonio. Note: Materials may be edited for content and length.


Journal Reference:

  1. Annabel A. Ferguson, Sudipa Roy, Kaitlyn N. Kormanik, Yongsoon Kim, Kathleen J. Dumas, Vladimir B. Ritov, Dietrich Matern, Patrick J. Hu, Alfred L. Fisher. TATN-1 Mutations Reveal a Novel Role for Tyrosine as a Metabolic Signal That Influences Developmental Decisions and Longevity inCaenorhabditis elegans. PLoS Genetics, 2013; 9 (12): e1004020 DOI: 10.1371/journal.pgen.1004020

Cite This Page:

University of Texas Health Science Center at San Antonio. "Amino acid's increase suspected in diabetes." ScienceDaily. ScienceDaily, 19 December 2013. <www.sciencedaily.com/releases/2013/12/131219200044.htm>.
University of Texas Health Science Center at San Antonio. (2013, December 19). Amino acid's increase suspected in diabetes. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2013/12/131219200044.htm
University of Texas Health Science Center at San Antonio. "Amino acid's increase suspected in diabetes." ScienceDaily. www.sciencedaily.com/releases/2013/12/131219200044.htm (accessed July 24, 2014).

Share This




More Health & Medicine News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com
Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Can Watching TV Make You Feel Like A Failure?

Can Watching TV Make You Feel Like A Failure?

Newsy (July 24, 2014) A study by German researchers claims watching TV while you're stressed out can make you feel guilty and like a failure. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins