Featured Research

from universities, journals, and other organizations

Novel exfoliation method paves the way for two-dimensional materials to be used in printable photonics and electronics

Date:
January 2, 2014
Source:
National University of Singapore
Summary:
Scientists have successfully developed a method to chemically exfoliate molybdenum disulfide crystals into high quality monolayer flakes, with higher yield and larger flake size than current methods.

Dr Zheng Jian, the first author of the paper, demonstrating the printing of molybdenum disulfide flakes from a solution of the exfoliated flakes.
Credit: National University of Singapore (NUS)

A team of scientists from the National University of Singapore (NUS) has successfully developed a method to chemically exfoliate molybdenum disulfide crystals, a class of chalcogenide compounds, into high quality monolayer flakes, with higher yield and larger flake size than current methods. The exfoliated flakes can be made into a printable solution, which can be applied in printable photonics and electronics.

This breakthrough, led by Professor Loh Kian Ping, who heads the Department of Chemistry at the NUS Faculty of Science, and is also a Principal Investigator with the Graphene Research Centre at the Faculty, has generic applicability to other two-dimensional chalcogenides, such as tungsten diselenide and titanium disulfide, and results in high yield exfoliation for all of these two-dimensional materials.

The NUS team collaborated with scientists from the Ulsan National Institute of Science and Technology in Korea, and the findings were first published online in scientific journal Nature Communications on 2 January 2014.

Demand for high efficiency exfoliation method

Transition metal dichalcogenides, formed by a combination of chalcogens, such as sulphur or selenium, and transition metals, such as molybdenum or tungsten, have recently attracted great attention as the next generation of two-dimensional materials due to their unique electronic and optical properties, for applications in optoelectronic devices such as thin film solars, photodetectors flexible logic circuits and sensors.

However, current processes of producing printable single layer chalcogenides take a long time and the yield is poor. The flakes produced are of submicron sizes, which make it challenging to isolate a single sheet for making electronic devices.

As most applications require clean and large-sized flakes, this pinpoints a clear need to explore new ways to make high quality single-layer transition metal dichalcogenides with high yield.

Breakthrough in production

To address the production bottleneck, the NUS team explored the metal adducts of naphthalene. They prepared naphthalenide adducts of lithium, sodium and potassium, and compared the exfoliation efficiency and quality of molybdenum disulfide generated. The processing steps are detailed in the Annex.

Using a two-step expansion and intercalation method, the researchers were able to produce high quality single-layer molybdenum disulfide sheets with unprecedentedly large flake size.

The researchers also demonstrated that the exfoliated molybdenum disulfide flakes can be made into a printable solution, and wafer-size films can be printed, as the good dispersion and high viscosity of the flakes render it highly suitable for inkjet printing.

In a comparative analysis, Dr Zheng Jian, the first author of the paper, who is also a Research Fellow with the Department of Chemistry at NUS Faculty of Science, found that the alkali metal naphthalenide intercalation method applied possesses significant advantages in comparison to the conventional method.

Commenting on the significance of the findings, Prof Loh said, "At present, there is a bottleneck in the development of solution-processed two dimensional chalcogenides. Our team has developed an alternative exfoliating agent using the organic salts of naphthalene and this new method is more efficient than previous solution-based methods. It can also be applied to other classes of two-dimensional chalcogenides."

"Considering the versatility of this method, it may be adopted as the new benchmark in exfoliation chemistry of two-dimensional chalcogenides," he added.

Further research into printable devices

The fast growing field of printed photonics, electronics and optoelectronics demands high material quality, precise material deposition, and application-specific optical, electrical, chemical, and mechanical properties.

To further their research and to cater to the industry, Prof Loh and his team will be looking at developing inks based on different types of two-dimensional chalcogenides exfoliated by their novel method so as to produce printable optoelectronic devices. They will also be testing the optical non-linear properties of the flakes they have produced.


Story Source:

The above story is based on materials provided by National University of Singapore. Note: Materials may be edited for content and length.


Cite This Page:

National University of Singapore. "Novel exfoliation method paves the way for two-dimensional materials to be used in printable photonics and electronics." ScienceDaily. ScienceDaily, 2 January 2014. <www.sciencedaily.com/releases/2014/01/140102112047.htm>.
National University of Singapore. (2014, January 2). Novel exfoliation method paves the way for two-dimensional materials to be used in printable photonics and electronics. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2014/01/140102112047.htm
National University of Singapore. "Novel exfoliation method paves the way for two-dimensional materials to be used in printable photonics and electronics." ScienceDaily. www.sciencedaily.com/releases/2014/01/140102112047.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
What Is Magic Leap, And Why Is It Worth $500M?

What Is Magic Leap, And Why Is It Worth $500M?

Newsy (Oct. 22, 2014) — Magic Leap isn't publicizing much more than a description of its product, but it’s been enough for Google and others to invest more than $500M. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins