Featured Research

from universities, journals, and other organizations

Mom's proteins may help fly embryos face the heat

Date:
January 6, 2014
Source:
Society for Integrative and Comparative Biology (SICB)
Summary:
High temperatures can cause proteins within the embryo to become denatured—- an unraveling that results in loss of function, an ineffective or denatured protein. Moreover, denatured proteins can form aggregates that are toxic. Understanding this process has important implications for human health, because such protein aggregates are a hallmark of neurodegenerative diseases, such as Parkinson’s and Huntington’s.

In nature, animals face a broad range of temperatures, and at times the heat can become taxing. When it becomes too hot to survive, some animals can simply migrate to more favorable climates, but what if you are a mere embryo confined within an egg and cannot escape the heat?
Credit: Image courtesy of Society for Integrative and Comparative Biology (SICB)

In nature, animals face a broad range of temperatures, and at times the heat can become taxing. When it becomes too hot to survive, some animals can simply migrate to more favorable climates, but what if you are a mere embryo confined within an egg and cannot escape the heat?

Related Articles


High temperatures can cause proteins within the embryo to become denatured -- an unraveling that results in loss of function, an ineffective or denatured protein. Moreover, denatured proteins can form aggregates that are toxic. Understanding this process has important implications for human health, because such protein aggregates are a hallmark of neurodegenerative diseases, such as Parkinson's and Huntington's.

But what happens when embryos face temperatures outside their optimal zone remains a puzzle. "Nobody has looked at the ecological context of thermal environment on early developing embryos," explains Dr. Brent Lockwood, a National Institute of Health Postdoctoral researcher at Indiana University.

Lockwood has been studying developing fruit fly embryos to understand the influence of temperature. Fruit flies are used because their genetics are well established, and the small flies are ideal for cellular microscopy. "You can watch cellular development in real time under the microscope -- and get a sense of what is really going on," says Dr. Lockwood.

As presented at the 2014 Society for Integrative and Comparative Biology annual conference in Austin, Lockwood exposes the embryos to a range of temperatures to pinpoint when the eggs reach their threshold temperature, the point at which more than 50% of embryos die. He exposes one-hour old fly embryos to increasing amounts of heat over 45 minutes, a process called "heat-shocking." He then examines cellular processes using a microscope, providing an inside look into the cell, to discover precisely how temperature impacts development.

So what happens to embryo cells when they face heat stress? When the temperature rises, the cell's organization center, the cytoskeleton, unravels. Actin and tubulin, which are key proteins that coordinate early development, break down. Without their proper structure, embryos can no longer develop and so they perish. Under heat-shock, embryos lose their actin array, the tubulin becomes disorganized, and the cell loses its structure, effectively ending development of the embryo.

This work provides a unique, inside look at how temperature impacts development in animals beyond just fruit flies. "Because of the highly conserved role of the cytoskeleton, Dr. Lockwood's investigations into the mechanisms that maintain these cellular structures during times of environmental heat stress will have implications for the success of many species," explains Dr. Kristi Montooth, an Assistant Professor of Biology at Indiana University, who is also involved in this study.

When real environmental temperatures spike, how do fly eggs survive at all? The answer may be that mothers provide proteins that ease the effects of temperature. Mothers may inject heat-shock proteins -- special proteins that effectively sequester and 'fix' damaged proteins by helping them fold properly. Maternal heat shock proteins may act as a safeguard to protect embryos from heat-shock until they can make their own proteins.

The next step for Lockwood's research is to look at effects beyond the single cell and the individual. He plans to examine whether mother flies from hotter environments impart to their offspring a better ability to withstand heat stress. If the environment is hot enough, natural selection should favor mothers that make protective proteins, or favor mothers who lay their eggs in cooler, shadier spots.


Story Source:

The above story is based on materials provided by Society for Integrative and Comparative Biology (SICB). The original article was written by Julie Charbonnier. Note: Materials may be edited for content and length.


Cite This Page:

Society for Integrative and Comparative Biology (SICB). "Mom's proteins may help fly embryos face the heat." ScienceDaily. ScienceDaily, 6 January 2014. <www.sciencedaily.com/releases/2014/01/140106094201.htm>.
Society for Integrative and Comparative Biology (SICB). (2014, January 6). Mom's proteins may help fly embryos face the heat. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2014/01/140106094201.htm
Society for Integrative and Comparative Biology (SICB). "Mom's proteins may help fly embryos face the heat." ScienceDaily. www.sciencedaily.com/releases/2014/01/140106094201.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
The Hottest Food Trends for 2015

The Hottest Food Trends for 2015

Buzz60 (Dec. 17, 2014) Urbanspoon predicts whicg food trends will dominate the culinary scene in 2015. Mara Montalbano (@maramontalbano) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins