Featured Research

from universities, journals, and other organizations

Soap bubbles for predicting cyclone intensity?

Date:
January 8, 2014
Source:
CNRS
Summary:
Could soap bubbles be used to predict the strength of hurricanes and typhoons? However unexpected it may sound, this question prompted physicists to perform a highly novel experiment: they used soap bubbles to model atmospheric flow. A detailed study of the rotation rates of the bubble vortices enabled the scientists to obtain a relationship that accurately describes the evolution of their intensity, and propose a simple model to predict that of tropical cyclones.

Vortices in a soap bubble.
Credit: © Hamid Kellay

Could soap bubbles be used to predict the strength of hurricanes and typhoons? However unexpected it may sound, this question prompted physicists at the Laboratoire Ondes et Matière d'Aquitaine (CNRS/université de Bordeaux) to perform a highly novel experiment: they used soap bubbles to model atmospheric flow. A detailed study of the rotation rates of the bubble vortices enabled the scientists to obtain a relationship that accurately describes the evolution of their intensity, and propose a simple model to predict that of tropical cyclones.

Related Articles


The work, carried out in collaboration with researchers from the Institut de Mathématiques de Bordeaux (CNRS/université de Bordeaux/Institut Polytechnique de Bordeaux) and a team from Université de la Réunion, has just been published in the journal Nature Scientific Reports.

Predicting wind intensity or strength in tropical cyclones, typhoons and hurricanes is a key objective in meteorology: the lives of hundreds of thousands of people may depend on it. However, despite recent progress, such forecasts remain difficult since they involve many factors related to the complexity of these giant vortices and their interaction with the environment. A new research avenue has now been opened up by physicists at the Laboratoire Ondes et Matière d'Aquitaine (CNRS/Université Bordeaux 1), who have performed a highly novel experiment using, of all things, soap bubbles.

The researchers carried out simulations of flow on soap bubbles, reproducing the curvature of the atmosphere and approximating as closely as possible a simple model of atmospheric flow. The experiment allowed them to obtain vortices that resemble tropical cyclones and whose rotation rate and intensity exhibit astonishing dynamics-weak initially or just after the birth of the vortex, and increasing significantly over time. Following this intensification phase, the vortex attains its maximum intensity before entering a phase of decline.

A detailed study of the rotation rate of the vortices enabled the researchers to obtain a simple relationship that accurately describes the evolution of their intensity. For instance, the relationship can be used to determine the maximum intensity of the vortex and the time it takes to reach it, on the basis of its initial evolution. This prediction can begin around fifty hours after the formation of the vortex, a period corresponding to approximately one quarter of its lifetime and during which wind speeds intensify. The team then set out to verify that these results could be applied to real tropical cyclones. By applying the same analysis to approximately 150 tropical cyclones in the Pacific and Atlantic oceans, they showed that the relationship held true for such low-pressure systems. This study therefore provides a simple model that could help meteorologists to better predict the strength of tropical cyclones in the future.


Story Source:

The above story is based on materials provided by CNRS. Note: Materials may be edited for content and length.


Journal Reference:

  1. T. Meuel, Y. L. Xiong, P. Fischer, C. H. Bruneau, M. Bessafi, H. Kellay. Intensity of vortices: from soap bubbles to hurricanes. Scientific Reports, 2013; 3 DOI: 10.1038/srep03455

Cite This Page:

CNRS. "Soap bubbles for predicting cyclone intensity?." ScienceDaily. ScienceDaily, 8 January 2014. <www.sciencedaily.com/releases/2014/01/140108081039.htm>.
CNRS. (2014, January 8). Soap bubbles for predicting cyclone intensity?. ScienceDaily. Retrieved April 19, 2015 from www.sciencedaily.com/releases/2014/01/140108081039.htm
CNRS. "Soap bubbles for predicting cyclone intensity?." ScienceDaily. www.sciencedaily.com/releases/2014/01/140108081039.htm (accessed April 19, 2015).

Share This


More From ScienceDaily



More Earth & Climate News

Sunday, April 19, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nervous Return to Everest a Year After Deadly Avalanche

Nervous Return to Everest a Year After Deadly Avalanche

AFP (Apr. 18, 2015) — In the Himalayan town of Lukla, excitement mingles with fear as mountaineers make their way up to Everest a year after an avalanche killed 16 guides and triggered an unprecedented shut-down of the world&apos;s highest peak. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
L.A. Water Cops Remind Residents of Water Conservation

L.A. Water Cops Remind Residents of Water Conservation

Reuters - US Online Video (Apr. 18, 2015) — "Water cops" in Los Angeles remind the public about water conservation methods amid California&apos;s prolonged drought. Julie Noce reports. Video provided by Reuters
Powered by NewsLook.com
Planet Defence Conference Tackles Asteroid Threat

Planet Defence Conference Tackles Asteroid Threat

AFP (Apr. 17, 2015) — Scientists gathered at a European Space Agency (ESA) facility outside Rome this week for the Planetary Defence Conference 2015 to discuss how to tackle the potential threat from asteroids hitting Earth. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
Gulf Scarred, Resilient 5 Years After BP Spill

Gulf Scarred, Resilient 5 Years After BP Spill

AP (Apr. 17, 2015) — Five years after the Deepwater Horizon spill in the Gulf of Mexico, splotches of oil still dot the seafloor and wads of tarry petroleum-smelling material hide in pockets in the marshes of Barataria Bay. (April 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins