Featured Research

from universities, journals, and other organizations

New horizons in radiotherapy?

Date:
January 13, 2014
Source:
CNRS (Délégation Paris Michel-Ange)
Summary:
Targeted radiation therapy that is less harmful to healthy cells could see the light of day thanks to a team of researchers. Until now, radiotherapy treatments employed to combat cancer used a wide energy range when irradiating biological tissues. By studying at a fundamental level the behavior of molecules subjected to radiation with a carefully chosen energy, the researchers paved the way for tomorrow's radiotherapy treatments, which would not affect as much surrounding tissue and whose total radiation dose would be considerably reduced.

Targeted radiation therapy that is less harmful to healthy cells could see the light of day thanks to a team of French researchers from the Laboratoire de Chimie Physique -- Matière et Rayonnement (CNRS/UPMC) working in collaboration with German and American scientists. Until now, radiotherapy treatments employed to combat cancer used a wide energy range when irradiating biological tissues. By studying at a fundamental level the behavior of molecules subjected to radiation with a carefully chosen energy, the researchers paved the way for tomorrow's radiotherapy treatments, which would not affect as much surrounding tissue and whose total radiation dose would be considerably reduced.

Related Articles


This work, which sheds new light on the behavior of matter at the atomic scale and which could have important benefits in medicine, is published in the journal Nature.

The radiotherapy currently used in nearly half of cancer treatments irradiates biological tissue using a radiation with a wide energy spectrum in order to destroy the cancerous cells. The work of the international team headed by two CNRS researchers from the Laboratoire de Chimie Physique -- Matière et Rayonnement (CNRS/UPMC) should make it possible to improve the precision and quality of treatment by more finely targeting the range of energy used. Their fundamental research originally aimed to study the behavior at the atomic scale of matter subjected to radiation, here an X-ray type of radiation, whose energy is selected with extreme precision. When an atom absorbs X-rays of a given energy, a process known as "interatomic Coulombic decay" takes place, leading to the emission of electrons by one of the atoms within a molecule. In their experiment, the researchers demonstrated that it is possible to produce a large amount of low energy electrons in the immediate environment of this target atom, giving rise to a phenomenon of resonance. In what way can these results be interesting for radiotherapy? In a living environment, these low energy electrons are capable of causing the breakage of a double strand of neighboring DNA. However, living cells, including cancerous cells, are usually capable of repairing the damage caused to a single strand of DNA, but not to the double strand. Using this process, it is therefore possible to envisage targeting cancerous cells to destroy them.

Since the irradiation of biological tissue in radiotherapy takes place over a wide energy range, the advantage of using a finely chosen radiation so as to bring about a resonant emission of the electrons is twofold: X-rays penetrate deeply into the tissues but only specific atoms within chosen molecules, administered beforehand so as to target the cancerous cells, are thus excited and the healthy tissues further away are not affected by the irradiation. In addition, the resonant excitation is ten times more efficient than the non-resonant excitation produced by less specific irradiation. The overall radiation dose may thus be considerably reduced.

These results have for the moment been obtained on small molecules made up of less than five atoms. The researchers now plan to test this process of producing electrons on more complex molecules containing several hundred or even several thousand atoms, such as the molecules that make up living cells. In the long term, the aim is to produce such electrons, toxic for DNA, within cancerous cells. To do so, the researchers are envisaging irradiating tissues with X-rays having the appropriate energy, after using a target atom to tag the cancerous cells.


Story Source:

The above story is based on materials provided by CNRS (Délégation Paris Michel-Ange). Note: Materials may be edited for content and length.


Journal Reference:

  1. F. Trinter, M. S. Schöffler, H.-K. Kim, F. P. Sturm, K. Cole, N. Neumann, A. Vredenborg, J. Williams, I. Bocharova, R. Guillemin, M. Simon, A. Belkacem, A. L. Landers, Th. Weber, H. Schmidt-Böcking, R. Dörner, T. Jahnke. Resonant Auger decay driving intermolecular Coulombic decay in molecular dimers. Nature, 2013; DOI: 10.1038/Nature12927

Cite This Page:

CNRS (Délégation Paris Michel-Ange). "New horizons in radiotherapy?." ScienceDaily. ScienceDaily, 13 January 2014. <www.sciencedaily.com/releases/2014/01/140113104745.htm>.
CNRS (Délégation Paris Michel-Ange). (2014, January 13). New horizons in radiotherapy?. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2014/01/140113104745.htm
CNRS (Délégation Paris Michel-Ange). "New horizons in radiotherapy?." ScienceDaily. www.sciencedaily.com/releases/2014/01/140113104745.htm (accessed October 24, 2014).

Share This



More Matter & Energy News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) — Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins