Featured Research

from universities, journals, and other organizations

Microscopic fountain pen adds new functionality to AFM microscopy

Date:
January 15, 2014
Source:
University of Twente
Summary:
The Atomic Force Microscope (AFM), which uses a fine-tipped probe to scan surfaces at the atomic scale, will soon be augmented with a chemical sensor. This involves the use of a hollow AFM cantilever, through which a liquid - in this case mercury - is passed under pressure. The droplet of mercury at the tip acts as a sensor.

The hollow cantilever of an AFM (tip is not shown now) is filled with mercury. The drop at the end is a chemical sensor.
Credit: University of Twente

The Atomic Force Microscope (AFM), which uses a fine-tipped probe to scan surfaces at the atomic scale, will soon be augmented with a chemical sensor. This involves the use of a hollow AFM cantilever, through which a liquid -- in this case mercury -- is passed under pressure. The droplet of mercury at the tip acts as a sensor. This microscopic fountain pen was developed by researchers at the University of Twente's MESA+ Institute for Nanotechnology.

An AFM's cantilever has a fine tip that can be used to map surfaces at the nanoscale. The movements of the tip are monitored using laser light reflected from the cantilever. If you could manufacture a hollow cantilever and pass a liquid through it, as happens in a fountain pen, then you could kill two birds with one stone. In addition to mapping surfaces, you could also use it to make highly localized measurements of the concentration of specific chemicals. This concept was the brainchild of ​​Dr Peter Schφn, a researcher who leads the "Enabling Technologies" Strategic Research Orientation at MESA+

Mercury

The liquid selected was mercury, as it has the ideal properties for this purpose, such as an extremely clean surface. The researchers have created a cantilever with a microscopic tube running through it. The tube's lining has special mechanical properties, to contain the mercury as it is pumped through under high pressure (6 bar). Using this system, it has proved possible to create a perfect droplet at the tip. The droplet itself is the sensor, moreover it can easily be replaced in situ by a new sensor -- the next droplet. It is also important that electrical current is only conducted through the mercury in the microscopic tube and not via parts of the cantilever, so as not to affect the measurement result. This goal, too, was successfully achieved.

Dual function

A sensor of such exquisite sensitivity can be used to measure concentrations of specific chemicals on biomolecules and biomembranes, for example. It can also be used in combination with AFM, to make highly localized measurements of corrosion while at the same time gathering other information about the surface in question. This makes for a particularly powerful combination of measurement methods.

Details of the "fountain pen's" mechanism of action were recently published in Analytical Chemistry. The researchers are now focusing on ways of combining this technique with an AFM tip. They are also developing a technique for efficiently releasing the used mercury droplet to make way for a "clean" sensor.


Story Source:

The above story is based on materials provided by University of Twente. Note: Materials may be edited for content and length.


Cite This Page:

University of Twente. "Microscopic fountain pen adds new functionality to AFM microscopy." ScienceDaily. ScienceDaily, 15 January 2014. <www.sciencedaily.com/releases/2014/01/140115075406.htm>.
University of Twente. (2014, January 15). Microscopic fountain pen adds new functionality to AFM microscopy. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2014/01/140115075406.htm
University of Twente. "Microscopic fountain pen adds new functionality to AFM microscopy." ScienceDaily. www.sciencedaily.com/releases/2014/01/140115075406.htm (accessed October 2, 2014).

Share This



More Matter & Energy News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) — Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) — Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) — A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) — A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins