Featured Research

from universities, journals, and other organizations

Refined model for reliable prediction of invasion dynamics

Date:
January 16, 2014
Source:
EAWAG: Swiss Federal Institute of Aquatic Science and Technology
Summary:
The question how rapidly animals, plants or microorganisms can colonize new territories is not only of interest to ecologists – the spread of invasive species can also have economic consequences, e.g. in the agricultural sector. Scientists have now refined an existing model and, for the first time, used laboratory experiments to validate its ability to predict biological invasion dynamics.

Local movement patterns of ciliates (Tetrahymena sp.) over a period of about a minute and a distance of a few millimetres. Each colour represents the trajectory of a different individual. By studying local movement and reproduction behaviour, it is possible to predict invasion dynamics over multiple generations.
Credit: EAWAG: Swiss Federal Institute of Aquatic Science and Technology

The question how rapidly animals, plants or microorganisms can colonize new territories is not only of interest to ecologists -- the spread of invasive species can also have economic consequences, e.g. in the agricultural sector. Scientists at Eawag and the EPF Lausanne have now refined an existing model and, for the first time, used laboratory experiments to validate its ability to predict biological invasion dynamics.

In today's globalized world, where people and goods move freely around the globe, animals, plants and microorganisms can also be transported almost anywhere within a short time and thus colonize new habitats thousands of kilometres away from their original territory. Control measures can only be implemented in the right place at the right time if the speed and patterns of such invasions can be reliably predicted.

Widely applied model

To predict the mean speed of invasion fronts, ecologists use a model originally developed in 1937 by the biologist R. A. Fisher and the mathematician A. N. Kolmogorov. Underlying this model are the processes of reaction (reproduction of organisms) and diffusion (movement of individuals in space); similar models are also applied in fields such as oncology (to describe tumor growth), as well as in physics and chemistry. Such modelling requires only two parameters, which can be readily determined: the diffusion coefficient and the rate of reproduction of the organisms in question.

Although the strengths of the ecological model are recognized, it has suffered from two decisive weakness: it has not previously been tested under controlled conditions, and it could not account for the variability in dispersal rates observed in nature. A team of researchers led by Eawag biologist Florian Altermatt and EPFL physicist Andrea Giometto have now added new elements to the model and performed laboratory experiments to test its predictions.

Dispersal in linear landscapes

Fluctuations in demographic processes are not attributable solely to environmental factors -- under identical conditions, not every individual will produce the same number of offspring. Accordingly, the scientists modified the mathematical model by including a stochastic differential equation to account for random individual differences in reproduction within a population. With this modified model, variability in the speed of invasion fronts can also be predicted.

The modelling data were then compared with the results of microcosm experiments, in which a two-metre-long "linear landscape" (Plexiglas channel filled with nutrient medium) was used to study the dispersal of freshwater ciliates. The movements of individual organisms were recorded by video cameras, which made it possible to calculate the diffusion coefficient. The rate of dispersal towards the uncolonized end of the channel was determined by measuring cell density profiles.

The results of the laboratory experiments agree closely with the simulations. Thanks to these experiments, the scientists hope that -- using the refined model -- it will soon also be possible to make rapid, reliable predictions of colonization dynamics in natural environments with just a few simple measurements. Their findings were published January 7th, 2014 in the Proceedings of the National Academy of Sciences.


Story Source:

The above story is based on materials provided by EAWAG: Swiss Federal Institute of Aquatic Science and Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. Giometto, A. Rinaldo, F. Carrara, F. Altermatt. Emerging predictable features of replicated biological invasion fronts. Proceedings of the National Academy of Sciences, 2013; 111 (1): 297 DOI: 10.1073/pnas.1321167110

Cite This Page:

EAWAG: Swiss Federal Institute of Aquatic Science and Technology. "Refined model for reliable prediction of invasion dynamics." ScienceDaily. ScienceDaily, 16 January 2014. <www.sciencedaily.com/releases/2014/01/140116085101.htm>.
EAWAG: Swiss Federal Institute of Aquatic Science and Technology. (2014, January 16). Refined model for reliable prediction of invasion dynamics. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2014/01/140116085101.htm
EAWAG: Swiss Federal Institute of Aquatic Science and Technology. "Refined model for reliable prediction of invasion dynamics." ScienceDaily. www.sciencedaily.com/releases/2014/01/140116085101.htm (accessed July 25, 2014).

Share This




More Computers & Math News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mobile App Gives Tour of Battle of Atlanta Sites

Mobile App Gives Tour of Battle of Atlanta Sites

AP (July 25, 2014) Emory University's Center for Digital Scholarship has launched a self-guided mobile tour app to coincide with the 150th anniversary of the Civil War's Battle of Atlanta. (July 25) Video provided by AP
Powered by NewsLook.com
Bill Gates: Health, Agriculture Key to Africa's Development

Bill Gates: Health, Agriculture Key to Africa's Development

AFP (July 24, 2014) Health and agriculture development are key if African countries are to overcome poverty and grow, US software billionaire Bill Gates said Thursday, as he received an honourary degree in Ethiopia. Duration: 00:36 Video provided by AFP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins