Featured Research

from universities, journals, and other organizations

Energy storage in miniaturized capacitors may boost green energy technology

Date:
January 17, 2014
Source:
American Institute of Physics (AIP)
Summary:
"Supercapacitors" take the energy-storing abilities of capacitors (which store electrical charge that can be quickly dumped to power devices) a step further, storing a far greater charge in a much smaller package. Researchers have now described the possibility of fabricating a new class of high heat-tolerant electronics that would employ supercapacitors made from a material called calcium-copper-titanate, or CCTO, which the researchers have identified for the first time as a practical energy-storage material.

The photograph shows clearly the large grains closely packed together and separated by well-defined grain boundaries. The density of the CCTO ceramic is 94 percent of the maximum theoretical density, indicating the superior nature of the samples.
Credit: R. K. Pandey/Texas State University

The capacitors of electronic circuits function something like batteries -- storing electrical charge that can be quickly dumped to power devices like camera flashes. So-called "supercapacitors" take the energy-storing abilities of capacitors a step further, storing a far greater charge in a much smaller package.

In a paper published in the journal AIP Advances researchers describe the possibility of fabricating a new class of high heat-tolerant electronics that would employ supercapacitors made from a material called calcium-copper-titanate, or CCTO, which the researchers have identified for the first time as a practical energy-storage material.

Devices using CCTO supercapacitors could compete with similar devices currently in use and could operate at much higher temperatures than standard silicon circuits, "more like the temperature in an engine," says William Stapleton, an assistant professor of electrical engineering at Texas State University (TSU) in San Marcos, Texas. CCTO had been identified as a promising supercapacitor material before, but its development for practical applications faced unexpected hurdles.

The lead author Raghvendra Pandey, Ingram Professor of electrical engineering at Texas State University, San Marcos, TX along with Stapleton and other collaborators, showed that in CCTO two properties of fundamental importance for the efficiency of a capacitor device are tightly linked. The first property, called permittivity, is the physical property of the capacitor material that allows it to store energy- with higher permittivity values representing a better capacitor.

The second property, called loss tangent "has to do with how efficiently energy can be moved into and out of the capacitor, that is, how much is lost in the process to inefficiency," Stapleton said.

"When the loss tangent is high," explain Pandey, "the capacitor is 'leaky' and it cannot hold a stored charge for more than a few seconds."

Researchers found that permittivity and loss tangent increased or decreased in tandem in CCTO. Efforts to simultaneously retain the high permittivity while minimizing the loss tangent might not succeed unless a new approach is taken for processing the material. While the work could help explain why researchers have had trouble producing ideal CCTO material in the past, Pandey and his research team have demonstrated that CCTO supercapacitors should be capable of achieving high permittivity while maintaining low loss tangent, which would make them suitable for storing energy at the desired levels for many industrial applications.

"Efficient, high-speed, high-density energy storage is important to many fields, and supercapacitors offer this," Stapleton said. "Fields such as 'green' energy and electric vehicles could benefit immediately from the use of these materials."


Story Source:

The above story is based on materials provided by American Institute of Physics (AIP). Note: Materials may be edited for content and length.


Journal Reference:

  1. R. K. Pandey, W. A. Stapleton, J. Tate, A. K. Bandyopadhyay, I. Sutanto, S. Sprissler, S. Lin. Applications of CCTO supercapacitor in energy storage and electronics. AIP Advances, 2013; 3 (6): 062126 DOI: 10.1063/1.4812709

Cite This Page:

American Institute of Physics (AIP). "Energy storage in miniaturized capacitors may boost green energy technology." ScienceDaily. ScienceDaily, 17 January 2014. <www.sciencedaily.com/releases/2014/01/140117153639.htm>.
American Institute of Physics (AIP). (2014, January 17). Energy storage in miniaturized capacitors may boost green energy technology. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2014/01/140117153639.htm
American Institute of Physics (AIP). "Energy storage in miniaturized capacitors may boost green energy technology." ScienceDaily. www.sciencedaily.com/releases/2014/01/140117153639.htm (accessed October 20, 2014).

Share This



More Matter & Energy News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gulfstream G500, G600 Unveiling

Gulfstream G500, G600 Unveiling

Flying (Oct. 20, 2014) Watch Gulfstream's public launch of the G500 and G600 at their headquarters in Savannah, Ga., along with a surprise unveiling of the G500, which taxied up under its own power. Video provided by Flying
Powered by NewsLook.com
Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com
What We Know About Microsoft's Rumored Smartwatch

What We Know About Microsoft's Rumored Smartwatch

Newsy (Oct. 20, 2014) Microsoft will reportedly release a smartwatch that works across different mobile platforms, has a two-day battery life and tracks heart rate. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins