Featured Research

from universities, journals, and other organizations

Researchers discover how heart arrhythmia occurs

Date:
January 19, 2014
Source:
University of Calgary
Summary:
Researchers have discovered the fundamental biology of calcium waves in relation to heart arrhythmias. The finding outlines the discovery of this fundamental physiological process that researchers hope will one day help design molecularly tailored medications that correct the pathophysiology.

Researchers have discovered the fundamental biology of calcium waves in relation to heart arrhythmias.

Related Articles


The findings published this month in the January 19 edition of Nature Medicine outlines the discovery of this fundamental physiological process that researchers hope will one day help design molecularly tailored medications that correct the pathophysiology.

Heart arrhythmias cause the heart to beat irregularly, resulting in symptoms such as dizziness and fainting, or in severe cases, sudden arrhythmic death. While many factors contribute to the development of arrhythmias, including genetics, scientists know that a common mechanism of cardiac arrhythmias is calcium overload in the heart, i.e. calcium-triggered arrhythmias that can lead to sudden death. The underlying mechanism of these calcium-triggered arrhythmias has remained a mystery for decades.

Using a combination of molecular biology, electrophysiology, and genetically engineering mice, scientists at the University of Calgary's and Alberta Health Services' Libin Cardiovascular Institute of Alberta (Libin Institute)have discovered that a calcium-sensing-gate in the cardiac calcium release channel (ryanodine receptor) is responsible for initiation of calcium waves and calcium-triggered arrhythmias.

Utilizing a genetically modified mouse model they were able to manipulate the sensor and completely prevented calcium-triggered arrhythmias.

"The calcium-sensing- gate mechanism discovered here is an entirely novel concept with potential to shift our general understanding of ion channel gating, cardiac arrhythmogenesis, and the treatment of calcium-triggered arrhythmias," says SR Wayne Chen, PhD, the study's senior author and University of Calgary- Libin Institute researcher. "These findings open a new chapter of calcium signaling and the discovery fosters the possibilities of new drug interventions."


Story Source:

The above story is based on materials provided by University of Calgary. Note: Materials may be edited for content and length.


Journal Reference:

  1. Wenqian Chen, Ruiwu Wang, Biyi Chen, Xiaowei Zhong, Huihui Kong, Yunlong Bai, Qiang Zhou, Cuihong Xie, Jingqun Zhang, Ang Guo, Xixi Tian, Peter P Jones, Megan L O'Mara, Yingjie Liu, Tao Mi, Lin Zhang, Jeff Bolstad, Lisa Semeniuk, Hongqiang Cheng, Jianlin Zhang, Ju Chen, D Peter Tieleman, Anne M Gillis, Henry J Duff, Michael Fill, Long-Sheng Song, S R Wayne Chen. The ryanodine receptor store-sensing gate controls Ca2 waves and Ca2 -triggered arrhythmias. Nature Medicine, 2014; DOI: 10.1038/nm.3440

Cite This Page:

University of Calgary. "Researchers discover how heart arrhythmia occurs." ScienceDaily. ScienceDaily, 19 January 2014. <www.sciencedaily.com/releases/2014/01/140119142458.htm>.
University of Calgary. (2014, January 19). Researchers discover how heart arrhythmia occurs. ScienceDaily. Retrieved March 27, 2015 from www.sciencedaily.com/releases/2014/01/140119142458.htm
University of Calgary. "Researchers discover how heart arrhythmia occurs." ScienceDaily. www.sciencedaily.com/releases/2014/01/140119142458.htm (accessed March 27, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, March 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) — A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com
House Ready to Pass Medicare Doc Bill

House Ready to Pass Medicare Doc Bill

AP (Mar. 26, 2015) — In rare bipartisan harmony, congressional leaders pushed a $214 billion bill permanently blocking physician Medicare cuts toward House passage Thursday, moving lawmakers closer to resolving a problem that has plagued them for years. (March 26) Video provided by AP
Powered by NewsLook.com
What's Different About This Latest Ebola Vaccine

What's Different About This Latest Ebola Vaccine

Newsy (Mar. 26, 2015) — A whole virus Ebola vaccine has been shown to protect monkeys exposed to the virus. Here&apos;s what&apos;s different about this vaccine. Video provided by Newsy
Powered by NewsLook.com
HIV Outbreak Prompts Public Health Emergency In Indiana

HIV Outbreak Prompts Public Health Emergency In Indiana

Newsy (Mar. 26, 2015) — Indiana Gov. Mike Pence says he will bring additional state resources to help stop the epidemic. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins