Featured Research

from universities, journals, and other organizations

Researchers discover how heart arrhythmia occurs

Date:
January 19, 2014
Source:
University of Calgary
Summary:
Researchers have discovered the fundamental biology of calcium waves in relation to heart arrhythmias. The finding outlines the discovery of this fundamental physiological process that researchers hope will one day help design molecularly tailored medications that correct the pathophysiology.

Researchers have discovered the fundamental biology of calcium waves in relation to heart arrhythmias.

The findings published this month in the January 19 edition of Nature Medicine outlines the discovery of this fundamental physiological process that researchers hope will one day help design molecularly tailored medications that correct the pathophysiology.

Heart arrhythmias cause the heart to beat irregularly, resulting in symptoms such as dizziness and fainting, or in severe cases, sudden arrhythmic death. While many factors contribute to the development of arrhythmias, including genetics, scientists know that a common mechanism of cardiac arrhythmias is calcium overload in the heart, i.e. calcium-triggered arrhythmias that can lead to sudden death. The underlying mechanism of these calcium-triggered arrhythmias has remained a mystery for decades.

Using a combination of molecular biology, electrophysiology, and genetically engineering mice, scientists at the University of Calgary's and Alberta Health Services' Libin Cardiovascular Institute of Alberta (Libin Institute)have discovered that a calcium-sensing-gate in the cardiac calcium release channel (ryanodine receptor) is responsible for initiation of calcium waves and calcium-triggered arrhythmias.

Utilizing a genetically modified mouse model they were able to manipulate the sensor and completely prevented calcium-triggered arrhythmias.

"The calcium-sensing- gate mechanism discovered here is an entirely novel concept with potential to shift our general understanding of ion channel gating, cardiac arrhythmogenesis, and the treatment of calcium-triggered arrhythmias," says SR Wayne Chen, PhD, the study's senior author and University of Calgary- Libin Institute researcher. "These findings open a new chapter of calcium signaling and the discovery fosters the possibilities of new drug interventions."


Story Source:

The above story is based on materials provided by University of Calgary. Note: Materials may be edited for content and length.


Journal Reference:

  1. Wenqian Chen, Ruiwu Wang, Biyi Chen, Xiaowei Zhong, Huihui Kong, Yunlong Bai, Qiang Zhou, Cuihong Xie, Jingqun Zhang, Ang Guo, Xixi Tian, Peter P Jones, Megan L O'Mara, Yingjie Liu, Tao Mi, Lin Zhang, Jeff Bolstad, Lisa Semeniuk, Hongqiang Cheng, Jianlin Zhang, Ju Chen, D Peter Tieleman, Anne M Gillis, Henry J Duff, Michael Fill, Long-Sheng Song, S R Wayne Chen. The ryanodine receptor store-sensing gate controls Ca2 waves and Ca2 -triggered arrhythmias. Nature Medicine, 2014; DOI: 10.1038/nm.3440

Cite This Page:

University of Calgary. "Researchers discover how heart arrhythmia occurs." ScienceDaily. ScienceDaily, 19 January 2014. <www.sciencedaily.com/releases/2014/01/140119142458.htm>.
University of Calgary. (2014, January 19). Researchers discover how heart arrhythmia occurs. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2014/01/140119142458.htm
University of Calgary. "Researchers discover how heart arrhythmia occurs." ScienceDaily. www.sciencedaily.com/releases/2014/01/140119142458.htm (accessed September 1, 2014).

Share This




More Health & Medicine News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Liberia Continues Fight Against Ebola

Liberia Continues Fight Against Ebola

AFP (Aug. 30, 2014) Authorities in Liberia try to stem the spread of the Ebola epidemic by raising awareness and setting up sanitation units for people to wash their hands. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
California Passes 'yes-Means-Yes' Campus Sexual Assault Bill

California Passes 'yes-Means-Yes' Campus Sexual Assault Bill

Reuters - US Online Video (Aug. 30, 2014) California lawmakers pass a bill requiring universities to adopt "affirmative consent" language in their definitions of consensual sex, part of a nationwide drive to curb sexual assault on campuses. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
New Drug Could Reduce Cardiovascular Deaths

New Drug Could Reduce Cardiovascular Deaths

Newsy (Aug. 30, 2014) The new drug from Novartis could reduce cardiovascular deaths by 20 percent compared to other similar drugs. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins